Large data

This vignette discusses how to work with large data sets using duckplyr.

library(conflicted)
library(duckplyr)
conflict_prefer("filter", "dplyr")
#> [conflicted] Removing existing preference.
#> [conflicted] Will prefer dplyr::filter over any other package.

Introduction

Data frames and other objects in R are stored in RAM. This can become problematic:

  • Data must be loaded into RAM first, even if only part of it is needed.
  • Data must be stored in RAM, even if it is not used.
  • RAM is limited, and data sets can be larger than the available RAM.

A variety of tools have been developed to work with large data sets, also in R. One examples is the dbplyr package, a dplyr backend that connects to SQL databases and is designed to work with various databases that support SQL. This is a viable approach if the data is already stored in a database, or if the data is stored in Parquet or CSV files and loaded as a lazy table via duckdb::tbl_file().

The dbplyr package translates dplyr code to SQL. The syntax and semantics are very similar, but not identical to plain dplyr. In contrast, the duckplyr package aims to be a fully compatible drop-in replacement for dplyr, with exactly the same syntax and semantics:

  • Input and output are data frames or tibbles.
  • All dplyr verbs are supported, with fallback.
  • All R data types and functions are supported, with fallback.
  • No SQL is generated, instead, DuckDB’s “relational” interface is used.

Full compatibility means fewer surprises and less cognitive load for the user. With DuckDB as the backend, duckplyr can also handle large data sets that do not fit into RAM, keeping full dplyr compatibility. The tools for bringing data into and out of R memory are modeled after the dplyr and dbplyr packages, and are described in the following sections.

See vignette("funnel") on eager and lazy data, vignette("limits") for limitations in the translation employed by duckplyr, and ?fallback for more information on fallback.

To duckplyr

The duckdb_tibble() function creates a duckplyr data frame from vectors:

df <- duckdb_tibble(x = 1:5, y = letters[1:5])
df
#> # A duckplyr data frame: 2 variables
#>       x y    
#>   <int> <chr>
#> 1     1 a    
#> 2     2 b    
#> 3     3 c    
#> 4     4 d    
#> 5     5 e

The duckdb_tibble() function is a drop-in replacement for tibble(), and can be used in the same way.

Similarly, as_duckdb_tibble() can be used to convert a data frame or another object to a duckplyr data frame:

flights_df() |>
  as_duckdb_tibble()
#> # A duckplyr data frame: 19 variables
#>     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#>    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
#>  1  2013     1     1      517            515         2      830            819
#>  2  2013     1     1      533            529         4      850            830
#>  3  2013     1     1      542            540         2      923            850
#>  4  2013     1     1      544            545        -1     1004           1022
#>  5  2013     1     1      554            600        -6      812            837
#>  6  2013     1     1      554            558        -4      740            728
#>  7  2013     1     1      555            600        -5      913            854
#>  8  2013     1     1      557            600        -3      709            723
#>  9  2013     1     1      557            600        -3      838            846
#> 10  2013     1     1      558            600        -2      753            745
#> # ℹ more rows
#> # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> #   hour <dbl>, minute <dbl>, time_hour <dttm>

Existing code that uses DuckDB via dbplyr can also take advantage. The following code creates a DuckDB connection and writes a data frame to a table:

path_duckdb <- tempfile(fileext = ".duckdb")
con <- DBI::dbConnect(duckdb::duckdb(path_duckdb))
DBI::dbWriteTable(con, "data", data.frame(x = 1:5, y = letters[1:5]))

dbplyr_data <- tbl(con, "data")
dbplyr_data
#> # Source:   table<"data"> [?? x 2]
#> # Database: DuckDB v1.1.3 [unknown@Linux 6.5.0-1025-azure:R 4.4.2//tmp/RtmpIdtW3W/file11094c7cf0de.duckdb]
#>       x y    
#>   <int> <chr>
#> 1     1 a    
#> 2     2 b    
#> 3     3 c    
#> 4     4 d    
#> 5     5 e
dbplyr_data |>
  explain()
#> <SQL>
#> SELECT *
#> FROM "data"
#> 
#> <PLAN>
#> physical_plan
#> ┌---------------------------┐
#> │         SEQ_SCAN          │
#> │    --------------------   │
#> │            data           │
#> │                           │
#> │        Projections:       │
#> │             x             │
#> │             y             │
#> │                           │
#> │          ~5 Rows          │
#> └---------------------------┘

The explain() output shows that the data is actually coming from a DuckDB table. The as_duckdb_tibble() function can then be used to seamlessly convert the data to a duckplyr frame:

dbplyr_data |>
  as_duckdb_tibble()
#> # A duckplyr data frame: 2 variables
#>       x y    
#>   <int> <chr>
#> 1     1 a    
#> 2     2 b    
#> 3     3 c    
#> 4     4 d    
#> 5     5 e
dbplyr_data |>
  as_duckdb_tibble() |>
  explain()
#> ┌---------------------------┐
#> │         SEQ_SCAN          │
#> │    --------------------   │
#> │            data           │
#> │                           │
#> │        Projections:       │
#> │             x             │
#> │             y             │
#> │                           │
#> │          ~5 Rows          │
#> └---------------------------┘

This only works for DuckDB connections. For other databases, turn the data into an R data frame or export it to a file before using as_duckdb_tibble().

DBI::dbDisconnect(con)

For other common cases, the duckdb_tibble() function fails with a helpful error message:

duckdb_tibble(a = 1) |>
  group_by(a) |>
  as_duckdb_tibble()
#> Error in `as_duckdb_tibble()`:
#> ! duckplyr does not support `group_by()`.
#> ℹ Use `.by` instead.
#> ℹ To proceed with dplyr, use `as_tibble()` or `as.data.frame()`.
duckdb_tibble(a = 1) |>
  rowwise() |>
  as_duckdb_tibble()
#> Error in `as_duckdb_tibble()`:
#> ! duckplyr does not support `rowwise()`.
#> ℹ To proceed with dplyr, use `as_tibble()` or `as.data.frame()`.
readr::read_csv("a\n1", show_col_types = FALSE) |>
  as_duckdb_tibble()
#> Error in `as_duckdb_tibble()`:
#> ! The input is data read by readr, and duckplyr supports reading CSV
#>   files directly.
#> ℹ Use `read_csv_duckdb()` to read with the built-in reader.
#> ℹ To proceed with the data as read by readr, use `as_tibble()` before
#>   `as_duckdb_tibble()`.

In all cases, as_tibble() can be used to proceed with the existing code.

From files

DuckDB supports data ingestion from CSV, Parquet, and JSON files. The read_csv_duckdb() function accepts a file path and returns a duckplyr frame.

path_csv_1 <- tempfile(fileext = ".csv")
writeLines("x,y\n1,a\n2,b\n3,c", path_csv_1)
read_csv_duckdb(path_csv_1)
#> # A duckplyr data frame: 2 variables
#>       x y    
#>   <dbl> <chr>
#> 1     1 a    
#> 2     2 b    
#> 3     3 c

Reading multiple files is also supported:

path_csv_2 <- tempfile(fileext = ".csv")
writeLines("x,y\n4,d\n5,e\n6,f", path_csv_2)
read_csv_duckdb(c(path_csv_1, path_csv_2))
#> # A duckplyr data frame: 2 variables
#>       x y    
#>   <dbl> <chr>
#> 1     1 a    
#> 2     2 b    
#> 3     3 c    
#> 4     4 d    
#> 5     5 e    
#> 6     6 f

The options argument can be used to control the reading.

Similarly, the read_parquet_duckdb() and read_json_duckdb() functions can be used to read Parquet and JSON files, respectively.

For reading from HTTPS or S3 URLs, the httpfs extension must be installed and loaded in each session.

db_exec("INSTALL httpfs")
db_exec("LOAD httpfs")

Installation is fast if the extension is already installed. Once loaded, the read_csv_duckdb(), read_parquet_duckdb(), and read_json_duckdb() functions can be used with URLs:

url <- "https://blobs.duckdb.org/flight-data-partitioned/Year=2024/data_0.parquet"
flights_parquet <- read_parquet_duckdb(url)
flights_parquet
#> # A duckplyr data frame: 110 variables
#>     Year Quarter Month DayofMonth DayOfWeek FlightDate Reporting_Airline
#>    <dbl>   <dbl> <dbl>      <dbl>     <dbl> <date>     <chr>            
#>  1  2024       1     1          8         1 2024-01-08 9E               
#>  2  2024       1     1          9         2 2024-01-09 9E               
#>  3  2024       1     1         10         3 2024-01-10 9E               
#>  4  2024       1     1         11         4 2024-01-11 9E               
#>  5  2024       1     1         12         5 2024-01-12 9E               
#>  6  2024       1     1         15         1 2024-01-15 9E               
#>  7  2024       1     1         16         2 2024-01-16 9E               
#>  8  2024       1     1         17         3 2024-01-17 9E               
#>  9  2024       1     1         18         4 2024-01-18 9E               
#> 10  2024       1     1         19         5 2024-01-19 9E               
#> # ℹ more rows
#> # ℹ 103 more variables: DOT_ID_Reporting_Airline <dbl>,
#> #   IATA_CODE_Reporting_Airline <chr>, Tail_Number <chr>,
#> #   Flight_Number_Reporting_Airline <dbl>, OriginAirportID <dbl>,
#> #   OriginAirportSeqID <dbl>, OriginCityMarketID <dbl>, Origin <chr>,
#> #   OriginCityName <chr>, OriginState <chr>, OriginStateFips <chr>,
#> #   OriginStateName <chr>, OriginWac <dbl>, DestAirportID <dbl>, …

In all cases, the data is read lazily: only the metadata is read initially, and the data is read as required. This means that data can be read from files that are larger than the available RAM. The Parquet format is particularly efficient for this purpose, as it stores data in a columnar format and allows reading only the columns that are required. See vignette("funnel") for more details on the concept of lazy data.

From DuckDB

In addition to as_duckdb_tibble(), arbitrary DuckDB queries can be executed and the result can be converted to a duckplyr frame. For this, attach an existing DuckDB database first:

sql_attach <- paste0(
  "ATTACH DATABASE '",
  path_duckdb,
  "' AS external (READ_ONLY)"
)
db_exec(sql_attach)

Then, use read_sql_duckdb() to execute a query and return a duckplyr frame:

read_sql_duckdb("SELECT * FROM external.data")
#> # A duckplyr data frame: 2 variables
#>       x y    
#>   <int> <chr>
#> 1     1 a    
#> 2     2 b    
#> 3     3 c    
#> 4     4 d    
#> 5     5 e

Materialization

In dbplyr, compute() is used to materialize a lazy table in a temporary table on the database, and collect() is used to bring the data into R memory. This interface works exactly the same in duckplyr:

simple_data <-
  duckdb_tibble(a = 1) |>
  mutate(b = 2)

simple_data |>
  explain()
#> ┌---------------------------┐
#> │         PROJECTION        │
#> │    --------------------   │
#> │             a             │
#> │             b             │
#> │                           │
#> │          ~1 Rows          │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │     R_DATAFRAME_SCAN      │
#> │    --------------------   │
#> │         data.frame        │
#> │                           │
#> │       Projections: a      │
#> │                           │
#> │          ~1 Rows          │
#> └---------------------------┘

simple_data_computed <-
  simple_data |>
  compute()

The compute.duckplyr_df() function returns a duckplyr frame that is materialized in a temporary table. The return value of the function is a duckplyr frame that can be used in further computations. The materialization is done in a temporary table, so the data is not persisted after the session ends:

simple_data_computed |>
  explain()
#> ┌---------------------------┐
#> │         SEQ_SCAN          │
#> │    --------------------   │
#> │    duckplyr_FDn9c63wNw    │
#> │                           │
#> │        Projections:       │
#> │             a             │
#> │             b             │
#> │                           │
#> │          ~1 Rows          │
#> └---------------------------┘

The collect() function brings the data into R memory and returns a plain tibble:

duckdb_tibble(a = 1) |>
  mutate(b = 2) |>
  collect()
#> # A tibble: 1 × 2
#>       a     b
#>   <dbl> <dbl>
#> 1     1     2

To files

To materialize data in a persistent file, the compute_csv() and compute_parquet() functions can be used. The compute_csv() function writes the data to a CSV file:

path_csv_out <- tempfile(fileext = ".csv")
duckdb_tibble(a = 1) |>
  mutate(b = 2) |>
  compute_csv(path_csv_out)
#> # A duckplyr data frame: 2 variables
#>       a     b
#>   <dbl> <dbl>
#> 1     1     2
writeLines(readLines(path_csv_out))
#> a,b
#> 1.0,2.0

The compute_parquet() function writes the data to a Parquet file:

path_parquet_out <- tempfile(fileext = ".parquet")
duckdb_tibble(a = 1) |>
  mutate(b = 2) |>
  compute_parquet(path_parquet_out) |>
  explain()
#> ┌---------------------------┐
#> │       READ_PARQUET        │
#> │    --------------------   │
#> │         Function:         │
#> │        READ_PARQUET       │
#> │                           │
#> │        Projections:       │
#> │             a             │
#> │             b             │
#> │                           │
#> │          ~1 Rows          │
#> └---------------------------┘

Just like with compute.duckplyr_df(), the return value of compute_csv() and compute_parquet() is a duckplyr frame that uses the created CSV or Parquet file and can be used in further computations. At the time of writing, direct JSON export is not supported.

The big picture

The functions shown in this vignette allow the construction of data transformation pipelines spanning multiple data sources and data that is too large to fit into memory. Full compatibility with dplyr is provided, so existing code can be used with duckplyr with minimal changes. The lazy evaluation of duckplyr frames allows for efficient data processing, as only the required data is read from disk. The materialization functions allow the data to be persisted in temporary tables or files, depending on the use case. A typical workflow might look like this:

  • Prepare all data sources as duckplyr frames: local data frames and files
  • Combine the data sources using dplyr verbs
  • Preview intermediate results as usual: the computation will be faster because only the first few rows are requested
  • To avoid rerunning the whole pipeline all over, use compute.duckplyr_df() or compute_parquet() to materialize any intermediate result that is too large to fit into memory
  • Collect the final result using collect.duckplyr_df() or write it to a file using compute_csv() or compute_parquet()

There is a caveat: due to the design of duckplyr, if a dplyr verb is not supported or uses a function that is not supported, the data will be read into memory before being processed further. By default, if the data pipeline starts with an ingestion function, the data will only be read into memory if it is not “too large” (currently defined as 1 million cells or values in the table):

flights_parquet |>
  group_by(Month)
#> Error in `group_by()`:
#> ! This operation cannot be carried out by DuckDB, and the input is a
#>   frugal duckplyr frame.
#> • Try `summarise(.by = ...)` or `mutate(.by = ...)` instead of `group_by()` and
#>   `ungroup()`.
#> ℹ Use `compute(prudence = "lavish")` to materialize to temporary storage and
#>   continue with duckplyr.
#> ℹ See `vignette("funnel")` for other options.

Because group_by() is not supported, the data will be attempted to read into memory before the group_by() operation is executed. Once the data is small enough to fit into memory, this works transparently.

flights_parquet |>
  count(Month, DayofMonth) |>
  group_by(Month)
#> # A tibble: 182 × 3
#> # Groups:   Month [6]
#>    Month DayofMonth     n
#>    <dbl>      <dbl> <int>
#>  1     1          1 17265
#>  2     1          2 18977
#>  3     1          3 18520
#>  4     1          4 18066
#>  5     1          5 18109
#>  6     1          6 16950
#>  7     1          7 18812
#>  8     1          8 18472
#>  9     1          9 16775
#> 10     1         10 16795
#> # ℹ 172 more rows

See vignette("funnel") for the concepts and mechanisms at play.