
Package: stringr (via r-universe)
September 19, 2024

Title Simple, Consistent Wrappers for Common String Operations

Version 1.5.1.9000

Description A consistent, simple and easy to use set of wrappers
around the fantastic 'stringi' package. All function and
argument names (and positions) are consistent, all functions
deal with ``NA'''s and zero length vectors in the same way, and
the output from one function is easy to feed into the input of
another.

License MIT + file LICENSE

URL https://stringr.tidyverse.org,

https://github.com/tidyverse/stringr

BugReports https://github.com/tidyverse/stringr/issues

Depends R (>= 3.6)

Imports cli, glue (>= 1.6.1), lifecycle (>= 1.0.3), magrittr, rlang
(>= 1.0.0), stringi (>= 1.5.3), vctrs (>= 0.4.0)

Suggests covr, dplyr, gt, htmltools, htmlwidgets, knitr, rmarkdown,
testthat (>= 3.0.0), tibble

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/potools/style explicit

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://tidyverse.r-universe.dev

RemoteUrl https://github.com/tidyverse/stringr

RemoteRef HEAD

RemoteSha 90f8ba7fc3746c07db2d41597bcdc143b78a76d4

1

https://stringr.tidyverse.org
https://github.com/tidyverse/stringr
https://github.com/tidyverse/stringr/issues

2 case

Contents

case . 2
invert_match . 4
modifiers . 4
stringr-data . 6
str_c . 7
str_conv . 8
str_count . 9
str_detect . 10
str_dup . 11
str_equal . 11
str_escape . 12
str_extract . 13
str_flatten . 14
str_glue . 15
str_length . 17
str_like . 18
str_locate . 19
str_match . 20
str_order . 21
str_pad . 23
str_remove . 24
str_replace . 25
str_replace_na . 26
str_split . 27
str_starts . 29
str_sub . 30
str_subset . 31
str_trim . 32
str_trunc . 33
str_unique . 34
str_view . 35
str_which . 36
str_wrap . 37
word . 38

Index 39

case Convert string to upper case, lower case, title case, or sentence case

case 3

Description

• str_to_upper() converts to upper case.

• str_to_lower() converts to lower case.

• str_to_title() converts to title case, where only the first letter of each word is capitalized.

• str_to_sentence() convert to sentence case, where only the first letter of sentence is capi-
talized.

Usage

str_to_upper(string, locale = "en")

str_to_lower(string, locale = "en")

str_to_title(string, locale = "en")

str_to_sentence(string, locale = "en")

Arguments

string Input vector. Either a character vector, or something coercible to one.

locale Locale to use for comparisons. See stringi::stri_locale_list() for all
possible options. Defaults to "en" (English) to ensure that default behaviour is
consistent across platforms.

Value

A character vector the same length as string.

Examples

dog <- "The quick brown dog"
str_to_upper(dog)
str_to_lower(dog)
str_to_title(dog)
str_to_sentence("the quick brown dog")

Locale matters!
str_to_upper("i") # English
str_to_upper("i", "tr") # Turkish

4 modifiers

invert_match Switch location of matches to location of non-matches

Description

Invert a matrix of match locations to match the opposite of what was previously matched.

Usage

invert_match(loc)

Arguments

loc matrix of match locations, as from str_locate_all()

Value

numeric match giving locations of non-matches

Examples

numbers <- "1 and 2 and 4 and 456"
num_loc <- str_locate_all(numbers, "[0-9]+")[[1]]
str_sub(numbers, num_loc[, "start"], num_loc[, "end"])

text_loc <- invert_match(num_loc)
str_sub(numbers, text_loc[, "start"], text_loc[, "end"])

modifiers Control matching behaviour with modifier functions

Description

Modifier functions control the meaning of the pattern argument to stringr functions:

• boundary(): Match boundaries between things.

• coll(): Compare strings using standard Unicode collation rules.

• fixed(): Compare literal bytes.

• regex() (the default): Uses ICU regular expressions.

modifiers 5

Usage

fixed(pattern, ignore_case = FALSE)

coll(pattern, ignore_case = FALSE, locale = "en", ...)

regex(
pattern,
ignore_case = FALSE,
multiline = FALSE,
comments = FALSE,
dotall = FALSE,
...

)

boundary(
type = c("character", "line_break", "sentence", "word"),
skip_word_none = NA,
...

)

Arguments

pattern Pattern to modify behaviour.

ignore_case Should case differences be ignored in the match? For fixed(), this uses a sim-
ple algorithm which assumes a one-to-one mapping between upper and lower
case letters.

locale Locale to use for comparisons. See stringi::stri_locale_list() for all
possible options. Defaults to "en" (English) to ensure that default behaviour is
consistent across platforms.

... Other less frequently used arguments passed on to stringi::stri_opts_collator(),
stringi::stri_opts_regex(), or stringi::stri_opts_brkiter()

multiline If TRUE, $ and ^ match the beginning and end of each line. If FALSE, the default,
only match the start and end of the input.

comments If TRUE, white space and comments beginning with # are ignored. Escape literal
spaces with \\ .

dotall If TRUE, . will also match line terminators.

type Boundary type to detect.

character Every character is a boundary.
line_break Boundaries are places where it is acceptable to have a line break

in the current locale.
sentence The beginnings and ends of sentences are boundaries, using intelli-

gent rules to avoid counting abbreviations (details).
word The beginnings and ends of words are boundaries.

skip_word_none Ignore "words" that don’t contain any characters or numbers - i.e. punctuation.
Default NA will skip such "words" only when splitting on word boundaries.

https://www.unicode.org/reports/tr29/#Sentence_Boundaries

6 stringr-data

Value

A stringr modifier object, i.e. a character vector with parent S3 class stringr_pattern.

Examples

pattern <- "a.b"
strings <- c("abb", "a.b")
str_detect(strings, pattern)
str_detect(strings, fixed(pattern))
str_detect(strings, coll(pattern))

coll() is useful for locale-aware case-insensitive matching
i <- c("I", "\u0130", "i")
i
str_detect(i, fixed("i", TRUE))
str_detect(i, coll("i", TRUE))
str_detect(i, coll("i", TRUE, locale = "tr"))

Word boundaries
words <- c("These are some words.")
str_count(words, boundary("word"))
str_split(words, " ")[[1]]
str_split(words, boundary("word"))[[1]]

Regular expression variations
str_extract_all("The Cat in the Hat", "[a-z]+")
str_extract_all("The Cat in the Hat", regex("[a-z]+", TRUE))

str_extract_all("a\nb\nc", "^.")
str_extract_all("a\nb\nc", regex("^.", multiline = TRUE))

str_extract_all("a\nb\nc", "a.")
str_extract_all("a\nb\nc", regex("a.", dotall = TRUE))

stringr-data Sample character vectors for practicing string manipulations

Description

fruit and words come from the rcorpora package written by Gabor Csardi; the data was collected
by Darius Kazemi and made available at https://github.com/dariusk/corpora. sentences is
a collection of "Harvard sentences" used for standardised testing of voice.

Usage

sentences

fruit

words

https://github.com/dariusk/corpora

str_c 7

Format

Character vectors.

Examples

length(sentences)
sentences[1:5]

length(fruit)
fruit[1:5]

length(words)
words[1:5]

str_c Join multiple strings into one string

Description

str_c() combines multiple character vectors into a single character vector. It’s very similar to
paste0() but uses tidyverse recycling and NA rules.

One way to understand how str_c() works is picture a 2d matrix of strings, where each argument
forms a column. sep is inserted between each column, and then each row is combined together
into a single string. If collapse is set, it’s inserted between each row, and then the result is again
combined, this time into a single string.

Usage

str_c(..., sep = "", collapse = NULL)

Arguments

... One or more character vectors.
NULLs are removed; scalar inputs (vectors of length 1) are recycled to the com-
mon length of vector inputs.
Like most other R functions, missing values are "infectious": whenever a miss-
ing value is combined with another string the result will always be missing. Use
dplyr::coalesce() or str_replace_na() to convert to the desired value.

sep String to insert between input vectors.

collapse Optional string used to combine output into single string. Generally better to
use str_flatten() if you needed this behaviour.

Value

If collapse = NULL (the default) a character vector with length equal to the longest input. If
collapse is a string, a character vector of length 1.

8 str_conv

Examples

str_c("Letter: ", letters)
str_c("Letter", letters, sep = ": ")
str_c(letters, " is for", "...")
str_c(letters[-26], " comes before ", letters[-1])

str_c(letters, collapse = "")
str_c(letters, collapse = ", ")

Differences from paste() ----------------------
Missing inputs give missing outputs
str_c(c("a", NA, "b"), "-d")
paste0(c("a", NA, "b"), "-d")
Use str_replace_NA to display literal NAs:
str_c(str_replace_na(c("a", NA, "b")), "-d")

Uses tidyverse recycling rules
Not run: str_c(1:2, 1:3) # errors
paste0(1:2, 1:3)

str_c("x", character())
paste0("x", character())

str_conv Specify the encoding of a string

Description

This is a convenient way to override the current encoding of a string.

Usage

str_conv(string, encoding)

Arguments

string Input vector. Either a character vector, or something coercible to one.

encoding Name of encoding. See stringi::stri_enc_list() for a complete list.

Examples

Example from encoding?stringi::stringi
x <- rawToChar(as.raw(177))
x
str_conv(x, "ISO-8859-2") # Polish "a with ogonek"
str_conv(x, "ISO-8859-1") # Plus-minus

str_count 9

str_count Count number of matches

Description

Counts the number of times pattern is found within each element of string.

Usage

str_count(string, pattern = "")

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.
The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
Match character, word, line and sentence boundaries with boundary(). The
empty string, ""``, is equivalent to boundary("character")‘.

Value

An integer vector the same length as string/pattern.

See Also

stringi::stri_count() which this function wraps.

str_locate()/str_locate_all() to locate position of matches

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_count(fruit, "a")
str_count(fruit, "p")
str_count(fruit, "e")
str_count(fruit, c("a", "b", "p", "p"))

str_count(c("a.", "...", ".a.a"), ".")
str_count(c("a.", "...", ".a.a"), fixed("."))

10 str_detect

str_detect Detect the presence/absence of a match

Description

str_detect() returns a logical vector with TRUE for each element of string that matches pattern
and FALSE otherwise. It’s equivalent to grepl(pattern, string).

Usage

str_detect(string, pattern, negate = FALSE)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.
The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
You can not match boundaries, including "", with this function.

negate If TRUE, inverts the resulting boolean vector.

Value

A logical vector the same length as string/pattern.

See Also

stringi::stri_detect() which this function wraps, str_subset() for a convenient wrapper
around x[str_detect(x, pattern)]

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_detect(fruit, "a")
str_detect(fruit, "^a")
str_detect(fruit, "a$")
str_detect(fruit, "b")
str_detect(fruit, "[aeiou]")

Also vectorised over pattern
str_detect("aecfg", letters)

Returns TRUE if the pattern do NOT match
str_detect(fruit, "^p", negate = TRUE)

str_dup 11

str_dup Duplicate a string

Description

str_dup() duplicates the characters within a string, e.g. str_dup("xy", 3) returns "xyxyxy".

Usage

str_dup(string, times, sep = NULL)

Arguments

string Input vector. Either a character vector, or something coercible to one.
times Number of times to duplicate each string.
sep String to insert between each duplicate.

Value

A character vector the same length as string/times.

Examples

fruit <- c("apple", "pear", "banana")
str_dup(fruit, 2)
str_dup(fruit, 2, sep = " ")
str_dup(fruit, 1:3)
str_c("ba", str_dup("na", 0:5))

str_equal Determine if two strings are equivalent

Description

This uses Unicode canonicalisation rules, and optionally ignores case.

Usage

str_equal(x, y, locale = "en", ignore_case = FALSE, ...)

Arguments

x, y A pair of character vectors.
locale Locale to use for comparisons. See stringi::stri_locale_list() for all

possible options. Defaults to "en" (English) to ensure that default behaviour is
consistent across platforms.

ignore_case Ignore case when comparing strings?
... Other options used to control collation. Passed on to stringi::stri_opts_collator().

12 str_escape

Value

An logical vector the same length as x/y.

See Also

stringi::stri_cmp_equiv() for the underlying implementation.

Examples

These two strings encode "a" with an accent in two different ways
a1 <- "\u00e1"
a2 <- "a\u0301"
c(a1, a2)

a1 == a2
str_equal(a1, a2)

ohm and omega use different code points but should always be treated
as equal
ohm <- "\u2126"
omega <- "\u03A9"
c(ohm, omega)

ohm == omega
str_equal(ohm, omega)

str_escape Escape regular expression metacharacters

Description

This function escapes metacharacter, the characters that have special meaning to the regular expres-
sion engine. In most cases you are better off using fixed() since it is faster, but str_escape() is
useful if you are composing user provided strings into a pattern.

Usage

str_escape(string)

Arguments

string Input vector. Either a character vector, or something coercible to one.

Value

A character vector the same length as string.

str_extract 13

Examples

str_detect(c("a", "."), ".")
str_detect(c("a", "."), str_escape("."))

str_extract Extract the complete match

Description

str_extract() extracts the first complete match from each string, str_extract_all()extracts all
matches from each string.

Usage

str_extract(string, pattern, group = NULL)

str_extract_all(string, pattern, simplify = FALSE)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.
The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
Match character, word, line and sentence boundaries with boundary(). The
empty string, ""``, is equivalent to boundary("character")‘.

group If supplied, instead of returning the complete match, will return the matched text
from the specified capturing group.

simplify A boolean.

• FALSE (the default): returns a list of character vectors.
• TRUE: returns a character matrix.

Value

• str_extract(): an character vector the same length as string/pattern.

• str_extract_all(): a list of character vectors the same length as string/pattern.

See Also

str_match() to extract matched groups; stringi::stri_extract() for the underlying imple-
mentation.

14 str_flatten

Examples

shopping_list <- c("apples x4", "bag of flour", "bag of sugar", "milk x2")
str_extract(shopping_list, "\\d")
str_extract(shopping_list, "[a-z]+")
str_extract(shopping_list, "[a-z]{1,4}")
str_extract(shopping_list, "\\b[a-z]{1,4}\\b")

str_extract(shopping_list, "([a-z]+) of ([a-z]+)")
str_extract(shopping_list, "([a-z]+) of ([a-z]+)", group = 1)
str_extract(shopping_list, "([a-z]+) of ([a-z]+)", group = 2)

Extract all matches
str_extract_all(shopping_list, "[a-z]+")
str_extract_all(shopping_list, "\\b[a-z]+\\b")
str_extract_all(shopping_list, "\\d")

Simplify results into character matrix
str_extract_all(shopping_list, "\\b[a-z]+\\b", simplify = TRUE)
str_extract_all(shopping_list, "\\d", simplify = TRUE)

Extract all words
str_extract_all("This is, suprisingly, a sentence.", boundary("word"))

str_flatten Flatten a string

Description

str_flatten() reduces a character vector to a single string. This is a summary function because
regardless of the length of the input x, it always returns a single string.

str_flatten_comma() is a variation designed specifically for flattening with commas. It automat-
ically recognises if last uses the Oxford comma and handles the special case of 2 elements.

Usage

str_flatten(string, collapse = "", last = NULL, na.rm = FALSE)

str_flatten_comma(string, last = NULL, na.rm = FALSE)

Arguments

string Input vector. Either a character vector, or something coercible to one.

collapse String to insert between each piece. Defaults to "".

last Optional string to use in place of the final separator.

na.rm Remove missing values? If FALSE (the default), the result will be NA if any
element of string is NA.

str_glue 15

Value

A string, i.e. a character vector of length 1.

Examples

str_flatten(letters)
str_flatten(letters, "-")

str_flatten(letters[1:3], ", ")

Use last to customise the last component
str_flatten(letters[1:3], ", ", " and ")

this almost works if you want an Oxford (aka serial) comma
str_flatten(letters[1:3], ", ", ", and ")

but it will always add a comma, even when not necessary
str_flatten(letters[1:2], ", ", ", and ")

str_flatten_comma knows how to handle the Oxford comma
str_flatten_comma(letters[1:3], ", and ")
str_flatten_comma(letters[1:2], ", and ")

str_glue Interpolation with glue

Description

These functions are wrappers around glue::glue() and glue::glue_data(), which provide a
powerful and elegant syntax for interpolating strings with {}.

These wrappers provide a small set of the full options. Use glue() and glue_data() directly from
glue for more control.

Usage

str_glue(..., .sep = "", .envir = parent.frame(), .trim = TRUE)

str_glue_data(.x, ..., .sep = "", .envir = parent.frame(), .na = "NA")

Arguments

... [expressions]
Unnamed arguments are taken to be expression string(s) to format. Multiple
inputs are concatenated together before formatting. Named arguments are taken
to be temporary variables available for substitution.

For `glue_data()`, elements in `...` override the values in `.x`.

16 str_glue

.sep [character(1): ‘""’]
Separator used to separate elements.

.envir [environment: parent.frame()]
Environment to evaluate each expression in. Expressions are evaluated from left
to right. If .x is an environment, the expressions are evaluated in that environ-
ment and .envir is ignored. If NULL is passed, it is equivalent to emptyenv().

.trim [logical(1): ‘TRUE’]
Whether to trim the input template with trim() or not.

.x [listish]
An environment, list, or data frame used to lookup values.

.na [character(1): ‘NA’]
Value to replace NA values with. If NULL missing values are propagated, that is
an NA result will cause NA output. Otherwise the value is replaced by the value
of .na.

Value

A character vector with same length as the longest input.

Examples

name <- "Fred"
age <- 50
anniversary <- as.Date("1991-10-12")
str_glue(

"My name is {name}, ",
"my age next year is {age + 1}, ",
"and my anniversary is {format(anniversary, '%A, %B %d, %Y')}."

)

single braces can be inserted by doubling them
str_glue("My name is {name}, not {{name}}.")

You can also used named arguments
str_glue(

"My name is {name}, ",
"and my age next year is {age + 1}.",
name = "Joe",
age = 40

)

`str_glue_data()` is useful in data pipelines
mtcars %>% str_glue_data("{rownames(.)} has {hp} hp")

str_length 17

str_length Compute the length/width

Description

str_length() returns the number of codepoints in a string. These are the individual elements
(which are often, but not always letters) that can be extracted with str_sub().

str_width() returns how much space the string will occupy when printed in a fixed width font (i.e.
when printed in the console).

Usage

str_length(string)

str_width(string)

Arguments

string Input vector. Either a character vector, or something coercible to one.

Value

A numeric vector the same length as string.

See Also

stringi::stri_length() which this function wraps.

Examples

str_length(letters)
str_length(NA)
str_length(factor("abc"))
str_length(c("i", "like", "programming", NA))

Some characters, like emoji and Chinese characters (hanzi), are square
which means they take up the width of two Latin characters
x <- c("\u6c49\u5b57", "\U0001f60a")
str_view(x)
str_width(x)
str_length(x)

There are two ways of representing a u with an umlaut
u <- c("\u00fc", "u\u0308")
They have the same width
str_width(u)
But a different length
str_length(u)
Because the second element is made up of a u + an accent
str_sub(u, 1, 1)

18 str_like

str_like Detect a pattern in the same way as SQL’s LIKE and ILIKE operators

Description

str_like() and str_like() follow the conventions of the SQL LIKE and ILIKE operators, namely:

• Must match the entire string.
• _ matches a single character (like .).
• % matches any number of characters (like .*).
• \% and _ match literal % and _.

The difference between the two functions is their case-sensitivity: str_like() is case sensitive and
str_ilike() is not.

Usage

str_like(string, pattern, ignore_case = deprecated())

str_ilike(string, pattern)

Arguments

string Input vector. Either a character vector, or something coercible to one.
pattern A character vector containing a SQL "like" pattern. See above for details.
ignore_case [Deprecated]

Value

A logical vector the same length as string.

Note

Prior to stringr 1.6.0, str_like() was incorrectly case-insensitive.

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_like(fruit, "app")
str_like(fruit, "app%")
str_like(fruit, "APP%")
str_like(fruit, "ba_ana")
str_like(fruit, "%apple")

str_ilike(fruit, "app")
str_ilike(fruit, "app%")
str_ilike(fruit, "APP%")
str_ilike(fruit, "ba_ana")
str_ilike(fruit, "%apple")

str_locate 19

str_locate Find location of match

Description

str_locate() returns the start and end position of the first match; str_locate_all() returns
the start and end position of each match.

Because the start and end values are inclusive, zero-length matches (e.g. $, ^, \\b) will have an
end that is smaller than start.

Usage

str_locate(string, pattern)

str_locate_all(string, pattern)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.

The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.

Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.

Match character, word, line and sentence boundaries with boundary(). The
empty string, ""``, is equivalent to boundary("character")‘.

Value

• str_locate() returns an integer matrix with two columns and one row for each element of
string. The first column, start, gives the position at the start of the match, and the second
column, end, gives the position of the end.

• str_locate_all() returns a list of integer matrices with the same length as string/pattern.
The matrices have columns start and end as above, and one row for each match.

See Also

str_extract() for a convenient way of extracting matches, stringi::stri_locate() for the
underlying implementation.

20 str_match

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_locate(fruit, "$")
str_locate(fruit, "a")
str_locate(fruit, "e")
str_locate(fruit, c("a", "b", "p", "p"))

str_locate_all(fruit, "a")
str_locate_all(fruit, "e")
str_locate_all(fruit, c("a", "b", "p", "p"))

Find location of every character
str_locate_all(fruit, "")

str_match Extract components (capturing groups) from a match

Description

Extract any number of matches defined by unnamed, (pattern), and named, (?<name>pattern)
capture groups.

Use a non-capturing group, (?:pattern), if you need to override default operate precedence but
don’t want to capture the result.

Usage

str_match(string, pattern)

str_match_all(string, pattern)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Unlike other stringr functions, str_match() only supports regular expressions,
as described vignette("regular-expressions"). The pattern should contain
at least one capturing group.

Value

• str_match(): a character matrix with the same number of rows as the length of string/pattern.
The first column is the complete match, followed by one column for each capture group. The
columns will be named if you used "named captured groups", i.e. (?<name>pattern').

• str_match_all(): a list of the same length as string/pattern containing character matri-
ces. Each matrix has columns as descrbed above and one row for each match.

str_order 21

See Also

str_extract() to extract the complete match, stringi::stri_match() for the underlying im-
plementation.

Examples

strings <- c(" 219 733 8965", "329-293-8753 ", "banana", "595 794 7569",
"387 287 6718", "apple", "233.398.9187 ", "482 952 3315",
"239 923 8115 and 842 566 4692", "Work: 579-499-7527", "$1000",
"Home: 543.355.3679")

phone <- "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

str_extract(strings, phone)
str_match(strings, phone)

Extract/match all
str_extract_all(strings, phone)
str_match_all(strings, phone)

You can also name the groups to make further manipulation easier
phone <- "(?<area>[2-9][0-9]{2})[- .](?<phone>[0-9]{3}[- .][0-9]{4})"
str_match(strings, phone)

x <- c("<a> ", "<a> <>", "<a>", "", NA)
str_match(x, "<(.*?)> <(.*?)>")
str_match_all(x, "<(.*?)>")

str_extract(x, "<.*?>")
str_extract_all(x, "<.*?>")

str_order Order, rank, or sort a character vector

Description

• str_sort() returns the sorted vector.

• str_order() returns an integer vector that returns the desired order when used for subsetting,
i.e. x[str_order(x)] is the same as str_sort()

• str_rank() returns the ranks of the values, i.e. arrange(df, str_rank(x)) is the same as
str_sort(df$x).

Usage

str_order(
x,
decreasing = FALSE,
na_last = TRUE,
locale = "en",

22 str_order

numeric = FALSE,
...

)

str_rank(x, locale = "en", numeric = FALSE, ...)

str_sort(
x,
decreasing = FALSE,
na_last = TRUE,
locale = "en",
numeric = FALSE,
...

)

Arguments

x A character vector to sort.

decreasing A boolean. If FALSE, the default, sorts from lowest to highest; if TRUE sorts from
highest to lowest.

na_last Where should NA go? TRUE at the end, FALSE at the beginning, NA dropped.

locale Locale to use for comparisons. See stringi::stri_locale_list() for all
possible options. Defaults to "en" (English) to ensure that default behaviour is
consistent across platforms.

numeric If TRUE, will sort digits numerically, instead of as strings.

... Other options used to control collation. Passed on to stringi::stri_opts_collator().

Value

A character vector the same length as string.

See Also

stringi::stri_order() for the underlying implementation.

Examples

x <- c("apple", "car", "happy", "char")
str_sort(x)

str_order(x)
x[str_order(x)]

str_rank(x)

In Czech, ch is a digraph that sorts after h
str_sort(x, locale = "cs")

Use numeric = TRUE to sort numbers in strings

str_pad 23

x <- c("100a10", "100a5", "2b", "2a")
str_sort(x)
str_sort(x, numeric = TRUE)

str_pad Pad a string to minimum width

Description

Pad a string to a fixed width, so that str_length(str_pad(x, n)) is always greater than or equal
to n.

Usage

str_pad(
string,
width,
side = c("left", "right", "both"),
pad = " ",
use_width = TRUE

)

Arguments

string Input vector. Either a character vector, or something coercible to one.

width Minimum width of padded strings.

side Side on which padding character is added (left, right or both).

pad Single padding character (default is a space).

use_width If FALSE, use the length of the string instead of the width; see str_width()/str_length()
for the difference.

Value

A character vector the same length as stringr/width/pad.

See Also

str_trim() to remove whitespace; str_trunc() to decrease the maximum width of a string.

Examples

rbind(
str_pad("hadley", 30, "left"),
str_pad("hadley", 30, "right"),
str_pad("hadley", 30, "both")

)

24 str_remove

All arguments are vectorised except side
str_pad(c("a", "abc", "abcdef"), 10)
str_pad("a", c(5, 10, 20))
str_pad("a", 10, pad = c("-", "_", " "))

Longer strings are returned unchanged
str_pad("hadley", 3)

str_remove Remove matched patterns

Description

Remove matches, i.e. replace them with "".

Usage

str_remove(string, pattern)

str_remove_all(string, pattern)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.
The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
You can not match boundaries, including "", with this function.

Value

A character vector the same length as string/pattern.

See Also

str_replace() for the underlying implementation.

Examples

fruits <- c("one apple", "two pears", "three bananas")
str_remove(fruits, "[aeiou]")
str_remove_all(fruits, "[aeiou]")

str_replace 25

str_replace Replace matches with new text

Description

str_replace() replaces the first match; str_replace_all() replaces all matches.

Usage

str_replace(string, pattern, replacement)

str_replace_all(string, pattern, replacement)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.

The default interpretation is a regular expression, as described in stringi::about_search_regex.
Control options with regex().

For str_replace_all() this can also be a named vector (c(pattern1 = replacement1)),
in order to perform multiple replacements in each element of string.

Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.

You can not match boundaries, including "", with this function.

replacement The replacement value, usually a single string, but it can be the a vector the
same length as string or pattern. References of the form \1, \2, etc will be
replaced with the contents of the respective matched group (created by ()).

Alternatively, supply a function (or formula): it will be passed a single character
vector and should return a character vector of the same length.

To replace the complete string with NA, use replacement = NA_character_.

Value

A character vector the same length as string/pattern/replacement.

See Also

str_replace_na() to turn missing values into "NA"; stri_replace() for the underlying imple-
mentation.

26 str_replace_na

Examples

fruits <- c("one apple", "two pears", "three bananas")
str_replace(fruits, "[aeiou]", "-")
str_replace_all(fruits, "[aeiou]", "-")
str_replace_all(fruits, "[aeiou]", toupper)
str_replace_all(fruits, "b", NA_character_)

str_replace(fruits, "([aeiou])", "")
str_replace(fruits, "([aeiou])", "\\1\\1")

Note that str_replace() is vectorised along text, pattern, and replacement
str_replace(fruits, "[aeiou]", c("1", "2", "3"))
str_replace(fruits, c("a", "e", "i"), "-")

If you want to apply multiple patterns and replacements to the same
string, pass a named vector to pattern.
fruits %>%

str_c(collapse = "---") %>%
str_replace_all(c("one" = "1", "two" = "2", "three" = "3"))

Use a function for more sophisticated replacement. This example
replaces colour names with their hex values.
colours <- str_c("\\b", colors(), "\\b", collapse="|")
col2hex <- function(col) {

rgb <- col2rgb(col)
rgb(rgb["red",], rgb["green",], rgb["blue",], maxColorValue = 255)

}

x <- c(
"Roses are red, violets are blue",
"My favourite colour is green"

)
str_replace_all(x, colours, col2hex)

str_replace_na Turn NA into "NA"

Description

Turn NA into "NA"

Usage

str_replace_na(string, replacement = "NA")

Arguments

string Input vector. Either a character vector, or something coercible to one.

replacement A single string.

str_split 27

Examples

str_replace_na(c(NA, "abc", "def"))

str_split Split up a string into pieces

Description

This family of functions provides various ways of splitting a string up into pieces. These two
functions return a character vector:

• str_split_1() takes a single string and splits it into pieces, returning a single character
vector.

• str_split_i() splits each string in a character vector into pieces and extracts the ith value,
returning a character vector.

These two functions return a more complex object:

• str_split() splits each string in a character vector into a varying number of pieces, returning
a list of character vectors.

• str_split_fixed() splits each string in a character vector into a fixed number of pieces,
returning a character matrix.

Usage

str_split(string, pattern, n = Inf, simplify = FALSE)

str_split_1(string, pattern)

str_split_fixed(string, pattern, n)

str_split_i(string, pattern, i)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.
The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
Match character, word, line and sentence boundaries with boundary(). The
empty string, ""``, is equivalent to boundary("character")‘.

28 str_split

n Maximum number of pieces to return. Default (Inf) uses all possible split posi-
tions.
For str_split(), this determines the maximum length of each element of the
output. For str_split_fixed(), this determines the number of columns in the
output; if an input is too short, the result will be padded with "".

simplify A boolean.
• FALSE (the default): returns a list of character vectors.
• TRUE: returns a character matrix.

i Element to return. Use a negative value to count from the right hand side.

Value

• str_split_1(): a character vector.
• str_split(): a list the same length as string/pattern containing character vectors.
• str_split_fixed(): a character matrix with n columns and the same number of rows as the

length of string/pattern.
• str_split_i(): a character vector the same length as string/pattern.

See Also

stri_split() for the underlying implementation.

Examples

fruits <- c(
"apples and oranges and pears and bananas",
"pineapples and mangos and guavas"

)

str_split(fruits, " and ")
str_split(fruits, " and ", simplify = TRUE)

If you want to split a single string, use `str_split_1`
str_split_1(fruits[[1]], " and ")

Specify n to restrict the number of possible matches
str_split(fruits, " and ", n = 3)
str_split(fruits, " and ", n = 2)
If n greater than number of pieces, no padding occurs
str_split(fruits, " and ", n = 5)

Use fixed to return a character matrix
str_split_fixed(fruits, " and ", 3)
str_split_fixed(fruits, " and ", 4)

str_split_i extracts only a single piece from a string
str_split_i(fruits, " and ", 1)
str_split_i(fruits, " and ", 4)
use a negative number to select from the end
str_split_i(fruits, " and ", -1)

str_starts 29

str_starts Detect the presence/absence of a match at the start/end

Description

str_starts() and str_ends() are special cases of str_detect() that only match at the beginning
or end of a string, respectively.

Usage

str_starts(string, pattern, negate = FALSE)

str_ends(string, pattern, negate = FALSE)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern with which the string starts or ends.

The default interpretation is a regular expression, as described in stringi::about_search_regex.
Control options with regex().

Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.

negate If TRUE, inverts the resulting boolean vector.

Value

A logical vector.

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_starts(fruit, "p")
str_starts(fruit, "p", negate = TRUE)
str_ends(fruit, "e")
str_ends(fruit, "e", negate = TRUE)

30 str_sub

str_sub Get and set substrings using their positions

Description

str_sub() extracts or replaces the elements at a single position in each string. str_sub_all()
allows you to extract strings at multiple elements in every string.

Usage

str_sub(string, start = 1L, end = -1L)

str_sub(string, start = 1L, end = -1L, omit_na = FALSE) <- value

str_sub_all(string, start = 1L, end = -1L)

Arguments

string Input vector. Either a character vector, or something coercible to one.

start, end A pair of integer vectors defining the range of characters to extract (inclusive).
Positive values count from the left of the string, and negative values count from
the right. In other words, if string is "abcdef" then 1 refers to "a" and -1
refers to "f".
Alternatively, instead of a pair of vectors, you can pass a matrix to start. The
matrix should have two columns, either labelled start and end, or start and
length. This makes str_sub() work directly with the output from str_locate()
and friends.

omit_na Single logical value. If TRUE, missing values in any of the arguments provided
will result in an unchanged input.

value Replacement string.

Value

• str_sub(): A character vector the same length as string/start/end.

• str_sub_all(): A list the same length as string. Each element is a character vector the
same length as start/end.

If end comes before start or start is outside the range of string then the corresponding output
will be the empty string.

See Also

The underlying implementation in stringi::stri_sub()

str_subset 31

Examples

hw <- "Hadley Wickham"

str_sub(hw, 1, 6)
str_sub(hw, end = 6)
str_sub(hw, 8, 14)
str_sub(hw, 8)

Negative values index from end of string
str_sub(hw, -1)
str_sub(hw, -7)
str_sub(hw, end = -7)

str_sub() is vectorised by both string and position
str_sub(hw, c(1, 8), c(6, 14))

if you want to extract multiple positions from multiple strings,
use str_sub_all()
x <- c("abcde", "ghifgh")
str_sub(x, c(1, 2), c(2, 4))
str_sub_all(x, start = c(1, 2), end = c(2, 4))

Alternatively, you can pass in a two column matrix, as in the
output from str_locate_all
pos <- str_locate_all(hw, "[aeio]")[[1]]
pos
str_sub(hw, pos)

You can also use `str_sub()` to modify strings:
x <- "BBCDEF"
str_sub(x, 1, 1) <- "A"; x
str_sub(x, -1, -1) <- "K"; x
str_sub(x, -2, -2) <- "GHIJ"; x
str_sub(x, 2, -2) <- ""; x

str_subset Find matching elements

Description

str_subset() returns all elements of string where there’s at least one match to pattern. It’s
a wrapper around x[str_detect(x, pattern)], and is equivalent to grep(pattern, x, value =
TRUE).

Use str_extract() to find the location of the match within each string.

Usage

str_subset(string, pattern, negate = FALSE)

32 str_trim

Arguments

string Input vector. Either a character vector, or something coercible to one.
pattern Pattern to look for.

The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
You can not match boundaries, including "", with this function.

negate If TRUE, inverts the resulting boolean vector.

Value

A character vector, usually smaller than string.

See Also

grep() with argument value = TRUE, stringi::stri_subset() for the underlying implementa-
tion.

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_subset(fruit, "a")

str_subset(fruit, "^a")
str_subset(fruit, "a$")
str_subset(fruit, "b")
str_subset(fruit, "[aeiou]")

Elements that don't match
str_subset(fruit, "^p", negate = TRUE)

Missings never match
str_subset(c("a", NA, "b"), ".")

str_trim Remove whitespace

Description

str_trim() removes whitespace from start and end of string; str_squish() removes whitespace
at the start and end, and replaces all internal whitespace with a single space.

Usage

str_trim(string, side = c("both", "left", "right"))

str_squish(string)

str_trunc 33

Arguments

string Input vector. Either a character vector, or something coercible to one.

side Side on which to remove whitespace: "left", "right", or "both", the default.

Value

A character vector the same length as string.

See Also

str_pad() to add whitespace

Examples

str_trim(" String with trailing and leading white space\t")
str_trim("\n\nString with trailing and leading white space\n\n")

str_squish(" String with trailing, middle, and leading white space\t")
str_squish("\n\nString with excess, trailing and leading white space\n\n")

str_trunc Truncate a string to maximum width

Description

Truncate a string to a fixed of characters, so that str_length(str_trunc(x, n)) is always less
than or equal to n.

Usage

str_trunc(string, width, side = c("right", "left", "center"), ellipsis = "...")

Arguments

string Input vector. Either a character vector, or something coercible to one.

width Maximum width of string.

side, ellipsis Location and content of ellipsis that indicates content has been removed.

Value

A character vector the same length as string.

See Also

str_pad() to increase the minimum width of a string.

34 str_unique

Examples

x <- "This string is moderately long"
rbind(

str_trunc(x, 20, "right"),
str_trunc(x, 20, "left"),
str_trunc(x, 20, "center")

)

str_unique Remove duplicated strings

Description

str_unique() removes duplicated values, with optional control over how duplication is measured.

Usage

str_unique(string, locale = "en", ignore_case = FALSE, ...)

Arguments

string Input vector. Either a character vector, or something coercible to one.

locale Locale to use for comparisons. See stringi::stri_locale_list() for all
possible options. Defaults to "en" (English) to ensure that default behaviour is
consistent across platforms.

ignore_case Ignore case when comparing strings?

... Other options used to control collation. Passed on to stringi::stri_opts_collator().

Value

A character vector, usually shorter than string.

See Also

unique(), stringi::stri_unique() which this function wraps.

Examples

str_unique(c("a", "b", "c", "b", "a"))

str_unique(c("a", "b", "c", "B", "A"))
str_unique(c("a", "b", "c", "B", "A"), ignore_case = TRUE)

Use ... to pass additional arguments to stri_unique()
str_unique(c("motley", "mötley", "pinguino", "pingüino"))
str_unique(c("motley", "mötley", "pinguino", "pingüino"), strength = 1)

str_view 35

str_view View strings and matches

Description

str_view() is used to print the underlying representation of a string and to see how a pattern
matches.

Matches are surrounded by <> and unusual whitespace (i.e. all whitespace apart from " " and "\n")
are surrounded by {} and escaped. Where possible, matches and unusual whitespace are coloured
blue and NAs red.

Usage

str_view(
string,
pattern = NULL,
match = TRUE,
html = FALSE,
use_escapes = FALSE

)

Arguments

string Input vector. Either a character vector, or something coercible to one.

pattern Pattern to look for.
The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
You can not match boundaries, including "", with this function.

match If pattern is supplied, which elements should be shown?

• TRUE, the default, shows only elements that match the pattern.
• NA shows all elements.
• FALSE shows only elements that don’t match the pattern.

If pattern is not supplied, all elements are always shown.

html Use HTML output? If TRUE will create an HTML widget; if FALSE will style
using ANSI escapes.

use_escapes If TRUE, all non-ASCII characters will be rendered with unicode escapes. This
is useful to see exactly what underlying values are stored in the string.

36 str_which

Examples

Show special characters
str_view(c("\"\\", "\\\\\\", "fgh", NA, "NA"))

A non-breaking space looks like a regular space:
nbsp <- "Hi\u00A0you"
nbsp
But it doesn't behave like one:
str_detect(nbsp, " ")
So str_view() brings it to your attention with a blue background
str_view(nbsp)

You can also use escapes to see all non-ASCII characters
str_view(nbsp, use_escapes = TRUE)

Supply a pattern to see where it matches
str_view(c("abc", "def", "fghi"), "[aeiou]")
str_view(c("abc", "def", "fghi"), "^")
str_view(c("abc", "def", "fghi"), "..")

By default, only matching strings will be shown
str_view(c("abc", "def", "fghi"), "e")
but you can show all:
str_view(c("abc", "def", "fghi"), "e", match = NA)
or just those that don't match:
str_view(c("abc", "def", "fghi"), "e", match = FALSE)

str_which Find matching indices

Description

str_which() returns the indices of string where there’s at least one match to pattern. It’s a
wrapper around which(str_detect(x, pattern)), and is equivalent to grep(pattern, x).

Usage

str_which(string, pattern, negate = FALSE)

Arguments

string Input vector. Either a character vector, or something coercible to one.
pattern Pattern to look for.

The default interpretation is a regular expression, as described in vignette("regular-expressions").
Use regex() for finer control of the matching behaviour.
Match a fixed string (i.e. by comparing only bytes), using fixed(). This is
fast, but approximate. Generally, for matching human text, you’ll want coll()
which respects character matching rules for the specified locale.
You can not match boundaries, including "", with this function.

str_wrap 37

negate If TRUE, inverts the resulting boolean vector.

Value

An integer vector, usually smaller than string.

Examples

fruit <- c("apple", "banana", "pear", "pineapple")
str_which(fruit, "a")

Elements that don't match
str_which(fruit, "^p", negate = TRUE)

Missings never match
str_which(c("a", NA, "b"), ".")

str_wrap Wrap words into nicely formatted paragraphs

Description

Wrap words into paragraphs, minimizing the "raggedness" of the lines (i.e. the variation in length
line) using the Knuth-Plass algorithm.

Usage

str_wrap(string, width = 80, indent = 0, exdent = 0, whitespace_only = TRUE)

Arguments

string Input vector. Either a character vector, or something coercible to one.

width Positive integer giving target line width (in number of characters). A width less
than or equal to 1 will put each word on its own line.

indent, exdent A non-negative integer giving the indent for the first line (indent) and all sub-
sequent lines (exdent).

whitespace_only

A boolean.

• If TRUE (the default) wrapping will only occur at whitespace.
• If FALSE, can break on any non-word character (e.g. /, -).

Value

A character vector the same length as string.

See Also

stringi::stri_wrap() for the underlying implementation.

38 word

Examples

thanks_path <- file.path(R.home("doc"), "THANKS")
thanks <- str_c(readLines(thanks_path), collapse = "\n")
thanks <- word(thanks, 1, 3, fixed("\n\n"))
cat(str_wrap(thanks), "\n")
cat(str_wrap(thanks, width = 40), "\n")
cat(str_wrap(thanks, width = 60, indent = 2), "\n")
cat(str_wrap(thanks, width = 60, exdent = 2), "\n")
cat(str_wrap(thanks, width = 0, exdent = 2), "\n")

word Extract words from a sentence

Description

Extract words from a sentence

Usage

word(string, start = 1L, end = start, sep = fixed(" "))

Arguments

string Input vector. Either a character vector, or something coercible to one.
start, end Pair of integer vectors giving range of words (inclusive) to extract. If negative,

counts backwards from the last word.
The default value select the first word.

sep Separator between words. Defaults to single space.

Value

A character vector with the same length as string/start/end.

Examples

sentences <- c("Jane saw a cat", "Jane sat down")
word(sentences, 1)
word(sentences, 2)
word(sentences, -1)
word(sentences, 2, -1)

Also vectorised over start and end
word(sentences[1], 1:3, -1)
word(sentences[1], 1, 1:4)

Can define words by other separators
str <- 'abc.def..123.4568.999'
word(str, 1, sep = fixed('..'))
word(str, 2, sep = fixed('..'))

Index

∗ datasets
stringr-data, 6

boundary (modifiers), 4
boundary(), 9, 13, 19, 27

case, 2
coll (modifiers), 4
coll(), 9, 10, 13, 19, 24, 25, 27, 29, 32, 35, 36

dplyr::coalesce(), 7

emptyenv(), 16

fixed (modifiers), 4
fixed(), 9, 10, 12, 13, 19, 24, 25, 27, 29, 32,

35, 36
fruit (stringr-data), 6

glue::glue(), 15
glue::glue_data(), 15
grep(), 32

invert_match, 4

modifiers, 4

paste0(), 7

regex (modifiers), 4
regex(), 9, 10, 13, 19, 24, 25, 27, 29, 32, 35,

36

sentences (stringr-data), 6
str_c, 7
str_conv, 8
str_count, 9
str_detect, 10
str_detect(), 29
str_dup, 11
str_ends (str_starts), 29
str_equal, 11

str_escape, 12
str_extract, 13
str_extract(), 19, 21, 31
str_extract_all (str_extract), 13
str_flatten, 14
str_flatten(), 7
str_flatten_comma (str_flatten), 14
str_glue, 15
str_glue_data (str_glue), 15
str_ilike (str_like), 18
str_length, 17
str_length(), 23
str_like, 18
str_locate, 19
str_locate(), 9, 30
str_locate_all (str_locate), 19
str_locate_all(), 4, 9
str_match, 20
str_match(), 13
str_match_all (str_match), 20
str_order, 21
str_pad, 23
str_pad(), 33
str_rank (str_order), 21
str_remove, 24
str_remove_all (str_remove), 24
str_replace, 25
str_replace(), 24
str_replace_all (str_replace), 25
str_replace_na, 26
str_replace_na(), 7, 25
str_sort (str_order), 21
str_split, 27
str_split_1 (str_split), 27
str_split_fixed (str_split), 27
str_split_i (str_split), 27
str_squish (str_trim), 32
str_starts, 29
str_sub, 30

39

40 INDEX

str_sub(), 17
str_sub<- (str_sub), 30
str_sub_all (str_sub), 30
str_subset, 31
str_subset(), 10
str_to_lower (case), 2
str_to_sentence (case), 2
str_to_title (case), 2
str_to_upper (case), 2
str_trim, 32
str_trim(), 23
str_trunc, 33
str_trunc(), 23
str_unique, 34
str_view, 35
str_view_all (str_view), 35
str_which, 36
str_width (str_length), 17
str_width(), 23
str_wrap, 37
stri_replace(), 25
stri_split(), 28
stringi::about_search_regex, 25, 29
stringi::stri_cmp_equiv(), 12
stringi::stri_count(), 9
stringi::stri_detect(), 10
stringi::stri_enc_list(), 8
stringi::stri_extract(), 13
stringi::stri_length(), 17
stringi::stri_locale_list(), 3, 5, 11, 22,

34
stringi::stri_locate(), 19
stringi::stri_match(), 21
stringi::stri_opts_brkiter(), 5
stringi::stri_opts_collator(), 5, 11, 22,

34
stringi::stri_opts_regex(), 5
stringi::stri_order(), 22
stringi::stri_sub(), 30
stringi::stri_subset(), 32
stringi::stri_unique(), 34
stringi::stri_wrap(), 37
stringr-data, 6

trim(), 16

unique(), 34

word, 38
words (stringr-data), 6

	case
	invert_match
	modifiers
	stringr-data
	str_c
	str_conv
	str_count
	str_detect
	str_dup
	str_equal
	str_escape
	str_extract
	str_flatten
	str_glue
	str_length
	str_like
	str_locate
	str_match
	str_order
	str_pad
	str_remove
	str_replace
	str_replace_na
	str_split
	str_starts
	str_sub
	str_subset
	str_trim
	str_trunc
	str_unique
	str_view
	str_which
	str_wrap
	word
	Index

