This vignette defines invariants for subsetting and subset-assignment
for tibbles, and illustrates where their behaviour differs from data
frames. The goal is to define a small set of invariants that
consistently define how behaviors interact. Some behaviors are defined
using functions of the vctrs package, e.g. vec_slice()
,
vec_recycle()
and vec_as_index()
. Refer to
their documentation for more details about the invariants that they
follow.
The subsetting and subassignment operators for data frames and
tibbles are particularly tricky, because they support both row and
column indexes, both of which are optionally missing. We resolve this by
first defining column access with [[
and $
,
then column-wise subsetting with [
, then row-wise
subsetting, then the composition of both.
Conventions
In this article, all behaviors are demonstrated using one example
data frame and its tibble equivalent:
library(tibble)
library(vctrs)
new_df <- function() {
df <- data.frame(n = c(1L, NA, 3L, NA))
df$c <- letters[5:8]
df$li <- list(9, 10:11, 12:14, "text")
df
}
new_tbl <- function() {
as_tibble(new_df())
}
Results of the same code for data frames and tibbles are presented
side by side:
new_df()
#> n c li
#> 1 1 e 9
#> 2 NA f 10, 11
#> 3 3 g 12, 13, 14
#> 4 NA h text
|
new_tbl()
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA f <int [2]>
#> 3 3 g <int [3]>
#> 4 NA h <chr [1]>
|
If the results are identical (after converting to a data frame if
necessary), only the tibble result is shown.
Subsetting operations are read-only. The same objects are reused in
all examples:
df <- new_df()
tbl <- new_tbl()
Where needed, we also show examples with hierarchical columns
containing a data frame or a matrix:
new_tbl2 <- function() {
tibble(
tb = tbl,
m = diag(4)
)
}
new_df2 <- function() {
df2 <- new_tbl2()
class(df2) <- "data.frame"
class(df2$tb) <- "data.frame"
df2
}
df2 <- new_df2()
tbl2 <- new_tbl2()
|
new_tbl()
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA f <int [2]>
#> 3 3 g <int [3]>
#> 4 NA h <chr [1]>
|
For subset assignment (subassignment, for short), we need a fresh
copy of the data for each test. The with_*()
functions
(omitted here for brevity) allow for a more concise notation. These
functions take an assignment expression, execute it on a fresh copy of
the data, and return the data for printing. The first example prints
what’s really executed, further examples omit this output.
with_df(df$n <- rev(df$n), verbose = TRUE)
#> {
#> df <- new_df()
#> df$n <- rev(df$n)
#> df
#> }
#> n c li
#> 1 NA e 9
#> 2 3 f 10, 11
#> 3 NA g 12, 13, 14
#> 4 1 h text
|
with_tbl(tbl$n <- rev(tbl$n), verbose = TRUE)
#> {
#> tbl <- new_tbl()
#> tbl$n <- rev(tbl$n)
#> tbl
#> }
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 NA e <dbl [1]>
#> 2 3 f <int [2]>
#> 3 NA g <int [3]>
#> 4 1 h <chr [1]>
|
Column extraction
Definition of x[[j]]
x[[j]]
is equal to .subset2(x, j)
.
|
tbl[[1]]
#> [1] 1 NA 3 NA
|
|
.subset2(tbl, 1)
#> [1] 1 NA 3 NA
|
NB: x[[j]]
always returns an object of size
nrow(x)
if the column exists.
j
must be a single number or a string, as enforced by
.subset2(x, j)
.
|
tbl[[1:2]]
#> Error:
#> ! The `j` argument of
#> `[[.tbl_df()` can't be a vector
#> of length 2 as of tibble 3.0.0.
#> ℹ Recursive subsetting is
#> deprecated for tibbles.
|
df[[c("n", "c")]]
#> Error in .subset2(x, i, exact = exact): subscript out of bounds
|
tbl[[c("n", "c")]]
#> Error in `tbl[[c("n", "c")]]`:
#> ! Can't extract column with `c("n", "c")`.
#> ✖ Subscript `c("n", "c")` must be size 1, not 2.
|
df[[TRUE]]
#> [1] 1 NA 3 NA
|
tbl[[TRUE]]
#> Error in `tbl[[TRUE]]`:
#> ! Can't extract column with `TRUE`.
#> ✖ `TRUE` must be numeric or character, not `TRUE`.
|
df[[mean]]
#> Error in .subset2(x, i, exact = exact): invalid subscript type 'closure'
|
tbl[[mean]]
#> Error in `tbl[[mean]]`:
#> ! Can't extract column with `mean`.
#> ✖ `mean` must be numeric or character, not a function.
|
NA
indexes, numeric out-of-bounds (OOB) values, and
non-integers throw an error:
|
tbl[[NA]]
#> Error in `tbl[[NA]]`:
#> ! Can't extract column with `NA`.
#> ✖ Subscript `NA` must be a location, not an integer `NA`.
|
df[[NA_character_]]
#> NULL
|
tbl[[NA_character_]]
#> Error in `tbl[[NA_character_]]`:
#> ! Can't extract column with `NA_character_`.
#> ✖ Subscript `NA_character_` must be a location, not a character `NA`.
|
df[[NA_integer_]]
#> NULL
|
tbl[[NA_integer_]]
#> Error in `tbl[[NA_integer_]]`:
#> ! Can't extract column with `NA_integer_`.
#> ✖ Subscript `NA_integer_` must be a location, not an integer `NA`.
|
df[[-1]]
#> Error in .subset2(x, i, exact = exact): invalid negative subscript in get1index <real>
|
tbl[[-1]]
#> Error in `tbl[[-1]]`:
#> ! Can't extract column with `-1`.
#> ✖ Subscript `-1` must be a positive location, not -1.
|
df[[4]]
#> Error in .subset2(x, i, exact = exact): subscript out of bounds
|
tbl[[4]]
#> Error in `tbl[[4]]`:
#> ! Can't extract columns past the end.
#> ℹ Location 4 doesn't exist.
#> ℹ There are only 3 columns.
|
df[[1.5]]
#> [1] 1 NA 3 NA
|
tbl[[1.5]]
#> Error in `tbl[[1.5]]`:
#> ! Can't extract column with `1.5`.
#> ✖ Can't convert from `j` <double> to <integer> due to loss of precision.
|
|
tbl[[Inf]]
#> Error in `tbl[[Inf]]`:
#> ! Can't extract column with `Inf`.
#> ✖ Can't convert from `j` <double> to <integer> due to loss of precision.
|
Character OOB access is silent because a common package idiom is to
check for the absence of a column with
is.null(df[[var]])
.
Definition of x$name
x$name
and x$"name"
are equal to
x[["name"]]
.
|
|
|
|
|
tbl[["n"]]
#> [1] 1 NA 3 NA
|
Unlike data frames, tibbles do not partially match names. Because
df$x
is rarely used in packages, it can raise a
warning:
df$l
#> [[1]]
#> [1] 9
#>
#> [[2]]
#> [1] 10 11
#>
#> [[3]]
#> [1] 12 13 14
#>
#> [[4]]
#> [1] "text"
|
tbl$l
#> Warning: Unknown or uninitialised
#> column: `l`.
#> NULL
|
|
tbl$not_present
#> Warning: Unknown or uninitialised
#> column: `not_present`.
#> NULL
|
Column subsetting
Definition of x[j]
j
is converted to an integer vector by
vec_as_index(j, ncol(x), names = names(x))
. Then
x[c(j_1, j_2, ..., j_n)]
is equivalent to
tibble(x[[j_1]], x[[j_2]], ..., x[[j_n]])
, keeping the
corresponding column names. This implies that j
must be a
numeric or character vector, or a logical vector with length 1 or
ncol(x)
.
|
tbl[1:2]
#> # A tibble: 4 × 2
#> n c
#> <int> <chr>
#> 1 1 e
#> 2 NA f
#> 3 3 g
#> 4 NA h
|
When subsetting repeated indexes, the resulting column names are
undefined, do not rely on them.
df[c(1, 1)]
#> n n.1
#> 1 1 1
#> 2 NA NA
#> 3 3 3
#> 4 NA NA
|
tbl[c(1, 1)]
#> # A tibble: 4 × 2
#> n n
#> <int> <int>
#> 1 1 1
#> 2 NA NA
#> 3 3 3
#> 4 NA NA
|
For tibbles with repeated column names, subsetting by name uses the
first matching column.
nrow(df[j])
equals nrow(df)
.
|
tbl[integer()]
#> # A tibble: 4 × 0
|
Tibbles support indexing by a logical matrix, but only if all values
in the returned vector are compatible.
df[is.na(df)]
#> [[1]]
#> [1] NA
#>
#> [[2]]
#> [1] NA
|
tbl[is.na(tbl)]
#> [1] NA NA
|
df[!is.na(df)]
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 3
#>
#> [[3]]
#> [1] "e"
#>
#> [[4]]
#> [1] "f"
#>
#> [[5]]
#> [1] "g"
#>
#> [[6]]
#> [1] "h"
#>
#> [[7]]
#> [1] 9
#>
#> [[8]]
#> [1] 10 11
#>
#> [[9]]
#> [1] 12 13 14
#>
#> [[10]]
#> [1] "text"
|
tbl[!is.na(tbl)]
#> Error in `vec_c()`:
#> ! Can't combine `n` <integer> and `c` <character>.
|
Definition of x[, j]
x[, j]
is equal to x[j]
. Tibbles do not
perform column extraction if x[j]
would yield a single
column.
|
tbl[, 1]
#> # A tibble: 4 × 1
#> n
#> <int>
#> 1 1
#> 2 NA
#> 3 3
#> 4 NA
|
|
tbl[, 1:2]
#> # A tibble: 4 × 2
#> n c
#> <int> <chr>
#> 1 1 e
#> 2 NA f
#> 3 3 g
#> 4 NA h
|
Definition of x[, j, drop = TRUE]
For backward compatiblity, x[, j, drop = TRUE]
performs
column extraction, returning x[j][[1]]
when ncol(x[j])
is 1.
|
tbl[, 1, drop = TRUE]
#> [1] 1 NA 3 NA
|
Row subsetting
Definition of x[i, ]
x[i, ]
is equal to
tibble(vec_slice(x[[1]], i), vec_slice(x[[2]], i), ...)
.
|
tbl[3, ]
#> # A tibble: 1 × 3
#> n c li
#> <int> <chr> <list>
#> 1 3 g <int [3]>
|
This means that i
must be a numeric vector, or a logical
vector of length nrow(x)
or 1. For compatibility,
i
can also be a character vector containing positive
numbers.
df[mean, ]
#> Error in xj[i]: invalid subscript type 'closure'
|
tbl[mean, ]
#> Error in `tbl[mean, ]`:
#> ! Can't subset rows with `mean`.
#> ✖ `mean` must be logical, numeric, or character, not a function.
|
df[list(1), ]
#> Error in xj[i]: invalid subscript type 'list'
|
tbl[list(1), ]
#> Error in `tbl[list(1), ]`:
#> ! Can't subset rows with `list(1)`.
#> ✖ `list(1)` must be logical, numeric, or character, not a list.
|
|
tbl["1", ]
#> # A tibble: 1 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
|
Exception: OOB values generate warnings instead of errors:
|
tbl[10, ]
#> # A tibble: 1 × 3
#> n c li
#> <int> <chr> <list>
#> 1 NA <NA> <NULL>
|
|
tbl["x", ]
#> # A tibble: 1 × 3
#> n c li
#> <int> <chr> <list>
#> 1 NA <NA> <NULL>
|
Unlike data frames, only logical vectors of length 1 are recycled.
df[c(TRUE, FALSE), ]
#> n c li
#> 1 1 e 9
#> 3 3 g 12, 13, 14
|
tbl[c(TRUE, FALSE), ]
#> Error in `tbl[c(TRUE, FALSE), ]`:
#> ! Can't subset rows with `c(TRUE, FALSE)`.
#> ✖ Logical subscript `c(TRUE, FALSE)` must be size 1 or 4, not 2.
|
NB: scalar logicals are recycled, but scalar numerics are not. That
makes the x[NA, ]
and x[NA_integer_, ]
return
different results.
|
tbl[NA, ]
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 NA <NA> <NULL>
#> 2 NA <NA> <NULL>
#> 3 NA <NA> <NULL>
#> 4 NA <NA> <NULL>
|
|
tbl[NA_integer_, ]
#> # A tibble: 1 × 3
#> n c li
#> <int> <chr> <list>
#> 1 NA <NA> <NULL>
|
Definition of x[i, , drop = TRUE]
drop = TRUE
has no effect when not selecting a single
row:
df[1, , drop = TRUE]
#> $n
#> [1] 1
#>
#> $c
#> [1] "e"
#>
#> $li
#> $li[[1]]
#> [1] 9
|
tbl[1, , drop = TRUE]
#> # A tibble: 1 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
|
Row and column subsetting
Definition of x[]
and x[,]
x[]
and x[,]
are equivalent to
x
.
Definition of x[i, j]
x[i, j]
is equal to x[i, ][j]
.
Definition of x[[i, j]]
i
must be a numeric vector of length 1.
x[[i, j]]
is equal to x[i, ][[j]]
, or
vctrs::vec_slice(x[[j]], i)
.
df[[1, 1]]
#> [1] 1
df[[1, 3]]
#> [1] 9
This implies that j
must be a numeric or character
vector of length 1.
NB: vec_size(x[[i, j]])
always equals 1. Unlike
x[i, ]
, x[[i, ]]
is not valid.
Column update
Definition of x[[j]] <- a
If a
is a vector then x[[j]] <- a
replaces the j
th column with value a
.
a
is recycled to the same size as x
so must
have size nrow(x)
or 1. (The only exception is when
a
is NULL
, as described below.) Recycling also
works for list, data frame, and matrix columns.
|
with_tbl(tbl[["li"]] <- list(0))
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA f <dbl [1]>
#> 3 3 g <dbl [1]>
#> 4 NA h <dbl [1]>
|
with_df2(df2[["tb"]] <- df[1, ])
#> Error in `[[<-.data.frame`(`*tmp*`, "tb", value = structure(list(n = 1L, : replacement has 1 row, data has 4
|
with_tbl2(tbl2[["tb"]] <- tbl[1, ])
#> # A tibble: 4 × 2
#> tb$n $c $li m[,1] [,2]
#> <int> <chr> <list> <dbl> <dbl>
#> 1 1 e <dbl [1]> 1 0
#> 2 1 e <dbl [1]> 0 1
#> 3 1 e <dbl [1]> 0 0
#> 4 1 e <dbl [1]> 0 0
#> # ℹ 1 more variable: m[3:4] <dbl>
|
with_df2(df2[["m"]] <- df2[["m"]][1, , drop = FALSE])
#> Error in `[[<-.data.frame`(`*tmp*`, "m", value = structure(c(1, 0, 0, : replacement has 1 row, data has 4
|
with_tbl2(tbl2[["m"]] <- tbl2[["m"]][1, , drop = FALSE])
#> # A tibble: 4 × 2
#> tb$n $c $li m[,1] [,2]
#> <int> <chr> <list> <dbl> <dbl>
#> 1 1 e <dbl [1]> 1 0
#> 2 NA f <int [2]> 1 0
#> 3 3 g <int [3]> 1 0
#> 4 NA h <chr [1]> 1 0
#> # ℹ 1 more variable: m[3:4] <dbl>
|
j
must be a scalar numeric or a string, and cannot be
NA
. If j
is OOB, a new column is added on the
right hand side, with name repair if needed.
|
with_tbl(tbl[["x"]] <- 0)
#> # A tibble: 4 × 4
#> n c li x
#> <int> <chr> <list> <dbl>
#> 1 1 e <dbl [1]> 0
#> 2 NA f <int [2]> 0
#> 3 3 g <int [3]> 0
#> 4 NA h <chr [1]> 0
|
with_df(df[[4]] <- 0)
#> n c li V4
#> 1 1 e 9 0
#> 2 NA f 10, 11 0
#> 3 3 g 12, 13, 14 0
#> 4 NA h text 0
|
with_tbl(tbl[[4]] <- 0)
#> # A tibble: 4 × 4
#> n c li ...4
#> <int> <chr> <list> <dbl>
#> 1 1 e <dbl [1]> 0
#> 2 NA f <int [2]> 0
#> 3 3 g <int [3]> 0
#> 4 NA h <chr [1]> 0
|
with_df(df[[5]] <- 0)
#> Warning in format.data.frame(if
#> (omit) x[seq_len(n0), , drop =
#> FALSE] else x, : corrupt data
#> frame: columns will be truncated or
#> padded with NAs
#> n c li V5
#> 1 1 e 9 NULL 0
#> 2 NA f 10, 11 <NA> 0
#> 3 3 g 12, 13, 14 <NA> 0
#> 4 NA h text <NA> 0
|
with_tbl(tbl[[5]] <- 0)
#> Error in `[[<-`:
#> ! Can't assign to columns beyond the end with non-consecutive locations.
#> ℹ Input has size 3.
#> ✖ Subscript `5` contains non-consecutive location 5.
|
df[[j]] <- a
replaces the complete column so can
change the type.
[[<-
supports removing a column by assigning
NULL
to it.
Removing a nonexistent column is a no-op.
Definition of x$name <- a
x$name <- a
and x$"name" <- a
are
equivalent to x[["name"]] <- a
.
|
with_tbl(tbl$n <- 0)
#> # A tibble: 4 × 3
#> n c li
#> <dbl> <chr> <list>
#> 1 0 e <dbl [1]>
#> 2 0 f <int [2]>
#> 3 0 g <int [3]>
#> 4 0 h <chr [1]>
|
|
with_tbl(tbl[["n"]] <- 0)
#> # A tibble: 4 × 3
#> n c li
#> <dbl> <chr> <list>
#> 1 0 e <dbl [1]>
#> 2 0 f <int [2]>
#> 3 0 g <int [3]>
#> 4 0 h <chr [1]>
|
$<-
does not perform partial matching.
|
with_tbl(tbl$l <- 0)
#> # A tibble: 4 × 4
#> n c li l
#> <int> <chr> <list> <dbl>
#> 1 1 e <dbl [1]> 0
#> 2 NA f <int [2]> 0
#> 3 3 g <int [3]> 0
#> 4 NA h <chr [1]> 0
|
|
with_tbl(tbl[["l"]] <- 0)
#> # A tibble: 4 × 4
#> n c li l
#> <int> <chr> <list> <dbl>
#> 1 1 e <dbl [1]> 0
#> 2 NA f <int [2]> 0
#> 3 3 g <int [3]> 0
#> 4 NA h <chr [1]> 0
|
Column subassignment: x[j] <- a
- If
j
is missing, it’s replaced with
seq_along(x)
- If
j
is logical vector, it’s converted to numeric with
seq_along(x)[j]
.
a
is a list or data frame
If inherits(a, "list")
or
inherits(a, "data.frame")
is TRUE
, then
x[j] <- a
is equivalent to
x[[j[[1]]] <- a[[1]]
,
x[[j[[2]]]] <- a[[2]]
, …
|
with_tbl(tbl[1:2] <- list("x", 4:1))
#> # A tibble: 4 × 3
#> n c li
#> <chr> <int> <list>
#> 1 x 4 <dbl [1]>
#> 2 x 3 <int [2]>
#> 3 x 2 <int [3]>
#> 4 x 1 <chr [1]>
|
|
with_tbl(tbl[c("li", "x", "c")] <- list("x", 4:1, NULL))
#> # A tibble: 4 × 3
#> n li x
#> <int> <chr> <int>
#> 1 1 x 4
#> 2 NA x 3
#> 3 3 x 2
#> 4 NA x 1
|
If length(a)
equals 1, then it is recycled to the same
length as j
.
|
with_tbl(tbl[1:2] <- list(1))
#> # A tibble: 4 × 3
#> n c li
#> <dbl> <dbl> <list>
#> 1 1 1 <dbl [1]>
#> 2 1 1 <int [2]>
#> 3 1 1 <int [3]>
#> 4 1 1 <chr [1]>
|
with_df(df[1:2] <- list(0, 0, 0))
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 1:2,
#> value = list(0, 0, 0)): provided 3
#> variables to replace 2 variables
#> n c li
#> 1 0 0 9
#> 2 0 0 10, 11
#> 3 0 0 12, 13, 14
#> 4 0 0 text
|
with_tbl(tbl[1:2] <- list(0, 0, 0))
#> Error in `[<-`:
#> ! Can't recycle `list(0, 0, 0)` (size 3) to size 2.
|
with_df(df[1:3] <- list(0, 0))
#> n c li
#> 1 0 0 0
#> 2 0 0 0
#> 3 0 0 0
#> 4 0 0 0
|
with_tbl(tbl[1:3] <- list(0, 0))
#> Error in `[<-`:
#> ! Can't recycle `list(0, 0)` (size 2) to size 3.
|
An attempt to update the same column twice gives an error.
with_df(df[c(1, 1)] <- list(1, 2))
#> Error in `[<-.data.frame`(`*tmp*`, c(1, 1), value = list(1, 2)): duplicate subscripts for columns
|
with_tbl(tbl[c(1, 1)] <- list(1, 2))
#> Error in `[<-`:
#> ! Column index 1 is used
#> more than once for assignment.
|
If a
contains NULL
values, the
corresponding columns are removed after updating (i.e. position
indexes refer to columns before any modifications).
|
with_tbl(tbl[1:2] <- list(NULL, 4:1))
#> # A tibble: 4 × 2
#> c li
#> <int> <list>
#> 1 4 <dbl [1]>
#> 2 3 <int [2]>
#> 3 2 <int [3]>
#> 4 1 <chr [1]>
|
NA
indexes are not supported.
Just like column updates, [<-
supports changing the
type of an existing column.
Appending columns at the end (without gaps) is supported. The name of
new columns is determined by the LHS, the RHS, or by name repair (in
that order of precedence).
|
with_tbl(tbl[c("x", "y")] <- tibble("x", x = 4:1))
#> # A tibble: 4 × 5
#> n c li x y
#> <int> <chr> <list> <chr> <int>
#> 1 1 e <dbl [1]> x 4
#> 2 NA f <int [2]> x 3
#> 3 3 g <int [3]> x 2
#> 4 NA h <chr [1]> x 1
|
|
with_tbl(tbl[3:4] <- list("x", x = 4:1))
#> # A tibble: 4 × 4
#> n c li x
#> <int> <chr> <chr> <int>
#> 1 1 e x 4
#> 2 NA f x 3
#> 3 3 g x 2
#> 4 NA h x 1
|
with_df(df[4] <- list(4:1))
#> n c li V4
#> 1 1 e 9 4
#> 2 NA f 10, 11 3
#> 3 3 g 12, 13, 14 2
#> 4 NA h text 1
|
with_tbl(tbl[4] <- list(4:1))
#> # A tibble: 4 × 4
#> n c li ...4
#> <int> <chr> <list> <int>
#> 1 1 e <dbl [1]> 4
#> 2 NA f <int [2]> 3
#> 3 3 g <int [3]> 2
#> 4 NA h <chr [1]> 1
|
with_df(df[5] <- list(4:1))
#> Error in `[<-.data.frame`(`*tmp*`, 5, value = list(4:1)): new columns would leave holes after existing columns
|
with_tbl(tbl[5] <- list(4:1))
#> Error in `[<-`:
#> ! Can't assign to columns beyond the end with non-consecutive locations.
#> ℹ Input has size 3.
#> ✖ Subscript `5` contains non-consecutive location 5.
|
Tibbles support indexing by a logical matrix, but only for a scalar
RHS, and if all columns updated are compatible with the value
assigned.
with_df(df[is.na(df)] <- 4)
#> n c li
#> 1 1 e 9
#> 2 4 f 10, 11
#> 3 3 g 12, 13, 14
#> 4 4 h text
|
with_tbl(tbl[is.na(tbl)] <- 4)
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 4 f <int [2]>
#> 3 3 g <int [3]>
#> 4 4 h <chr [1]>
|
with_df(df[is.na(df)] <- 1:2)
#> n c li
#> 1 1 e 9
#> 2 1 f 10, 11
#> 3 3 g 12, 13, 14
#> 4 2 h text
|
with_tbl(tbl[is.na(tbl)] <- 1:2)
#> Error in `[<-`:
#> ! Subscript `is.na(tbl)` is
#> a matrix, the data `1:2` must
#> have size 1.
|
with_df(df[matrix(c(rep(TRUE, 5), rep(FALSE, 7)), ncol = 3)] <- 4)
#> n c li
#> 1 4 4 9
#> 2 4 f 10, 11
#> 3 4 g 12, 13, 14
#> 4 4 h text
|
with_tbl(tbl[matrix(c(rep(TRUE, 5), rep(FALSE, 7)), ncol = 3)] <- 4)
#> Error in `[<-`:
#> ! Assigned data `4` must be
#> compatible with existing data.
#> ℹ Error occurred for column `c`.
#> Caused by error in `vec_assign()`:
#> ! Can't convert <double> to <character>.
|
a
is a matrix or array
If is.matrix(a)
, then a
is coerced to a
data frame with as.data.frame()
before assigning. If rows
are assigned, the matrix type must be compatible with all columns. If
is.array(a)
and any(dim(a)[-1:-2] != 1)
, an
error is thrown.
|
with_tbl(tbl[1:2] <- matrix(8:1, ncol = 2))
#> # A tibble: 4 × 3
#> n c li
#> <int> <int> <list>
#> 1 8 4 <dbl [1]>
#> 2 7 3 <int [2]>
#> 3 6 2 <int [3]>
#> 4 5 1 <chr [1]>
|
with_df(df[1:3, 1:2] <- matrix(6:1, ncol = 2))
#> n c li
#> 1 6 3 9
#> 2 5 2 10, 11
#> 3 4 1 12, 13, 14
#> 4 NA h text
|
with_tbl(tbl[1:3, 1:2] <- matrix(6:1, ncol = 2))
#> Error in `[<-`:
#> ! Assigned data `matrix(6:1,
#> ncol = 2)` must be compatible
#> with existing data.
#> ℹ Error occurred for column `c`.
#> Caused by error in `vec_assign()`:
#> ! Can't convert <integer> to <character>.
|
|
with_tbl(tbl[1:2] <- array(4:1, dim = c(4, 1, 1)))
#> # A tibble: 4 × 3
#> n c li
#> <int> <int> <list>
#> 1 4 4 <dbl [1]>
#> 2 3 3 <int [2]>
#> 3 2 2 <int [3]>
#> 4 1 1 <chr [1]>
|
|
with_tbl(tbl[1:2] <- array(8:1, dim = c(4, 2, 1)))
#> # A tibble: 4 × 3
#> n c li
#> <int> <int> <list>
#> 1 8 4 <dbl [1]>
#> 2 7 3 <int [2]>
#> 3 6 2 <int [3]>
#> 4 5 1 <chr [1]>
|
with_df(df[1:2] <- array(8:1, dim = c(2, 1, 4)))
#> n c li
#> 1 8 4 9
#> 2 7 3 10, 11
#> 3 6 2 12, 13, 14
#> 4 5 1 text
|
with_tbl(tbl[1:2] <- array(8:1, dim = c(2, 1, 4)))
#> Error in `[<-`:
#> ! `array(8:1, dim = c(2, 1,
#> 4))` must be a vector, a bare
#> list, a data frame, a matrix, or
#> NULL.
|
with_df(df[1:2] <- array(8:1, dim = c(4, 1, 2)))
#> n c li
#> 1 8 4 9
#> 2 7 3 10, 11
#> 3 6 2 12, 13, 14
#> 4 5 1 text
|
with_tbl(tbl[1:2] <- array(8:1, dim = c(4, 1, 2)))
#> Error in `[<-`:
#> ! `array(8:1, dim = c(4, 1,
#> 2))` must be a vector, a bare
#> list, a data frame, a matrix, or
#> NULL.
|
a
is another type of vector
If vec_is(a)
, then x[j] <- a
is
equivalent to x[j] <- list(a)
. This is primarily
provided for backward compatibility.
|
with_tbl(tbl[1] <- 0)
#> # A tibble: 4 × 3
#> n c li
#> <dbl> <chr> <list>
#> 1 0 e <dbl [1]>
#> 2 0 f <int [2]>
#> 3 0 g <int [3]>
#> 4 0 h <chr [1]>
|
|
with_tbl(tbl[1] <- list(0))
#> # A tibble: 4 × 3
#> n c li
#> <dbl> <chr> <list>
#> 1 0 e <dbl [1]>
#> 2 0 f <int [2]>
#> 3 0 g <int [3]>
#> 4 0 h <chr [1]>
|
Matrices must be wrapped in list()
before assignment to
create a matrix column.
|
with_tbl(tbl[1] <- list(matrix(1:8, ncol = 2)))
#> # A tibble: 4 × 3
#> n[,1] [,2] c li
#> <int> <int> <chr> <list>
#> 1 1 5 e <dbl [1]>
#> 2 2 6 f <int [2]>
#> 3 3 7 g <int [3]>
#> 4 4 8 h <chr [1]>
|
|
|
|
with_tbl(tbl[1:2] <- list(matrix(1:8, ncol = 2)))
#> # A tibble: 4 × 3
#> n[,1] [,2] c[,1] [,2] li
#> <int> <int> <int> <int> <list>
#> 1 1 5 1 5 <dbl [1]>
#> 2 2 6 2 6 <int [2]>
#> 3 3 7 3 7 <int [3]>
#> 4 4 8 4 8 <chr [1]>
|
a
is NULL
Entire columns can be removed. Specifying i
is an
error.
|
with_tbl(tbl[1] <- NULL)
#> # A tibble: 4 × 2
#> c li
#> <chr> <list>
#> 1 e <dbl [1]>
#> 2 f <int [2]>
#> 3 g <int [3]>
#> 4 h <chr [1]>
|
|
with_tbl(tbl[, 2:3] <- NULL)
#> # A tibble: 4 × 1
#> n
#> <int>
#> 1 1
#> 2 NA
#> 3 3
#> 4 NA
|
with_df(df[1, 2:3] <- NULL)
#> Error in x[[jj]][iseq] <- vjj: replacement has length zero
|
with_tbl(tbl[1, 2:3] <- NULL)
#> Error in `[<-`:
#> ! `NULL` must be a vector, a
#> bare list, a data frame or a
#> matrix.
|
a
is not a vector
Any other type for a
is an error. Note that if
is.list(a)
is TRUE
, but
inherits(a, "list")
is FALSE
, then
a
is considered to be a scalar. See ?vec_is
and ?vec_proxy
for details.
with_df(df[1] <- mean)
#> Error in rep(value, length.out = n): attempt to replicate an object of type 'closure'
|
with_tbl(tbl[1] <- mean)
#> Error in `[<-`:
#> ! `mean` must be a vector, a
#> bare list, a data frame, a
#> matrix, or NULL.
|
with_df(df[1] <- lm(mpg ~ wt, data = mtcars))
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 1, value
#> = structure(list(coefficients =
#> c(`(Intercept)` = 37.285126167342,
#> : replacement element 2 has 32 rows
#> to replace 4 rows
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 1, value
#> = structure(list(coefficients =
#> c(`(Intercept)` = 37.285126167342,
#> : replacement element 3 has 32 rows
#> to replace 4 rows
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 1, value
#> = structure(list(coefficients =
#> c(`(Intercept)` = 37.285126167342,
#> : replacement element 5 has 32 rows
#> to replace 4 rows
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 1, value
#> = structure(list(coefficients =
#> c(`(Intercept)` = 37.285126167342,
#> : replacement element 7 has 5 rows
#> to replace 4 rows
#> Error in `[<-.data.frame`(`*tmp*`, 1, value = structure(list(coefficients = c(`(Intercept)` = 37.285126167342, : replacement element 10 has 3 rows, need 4
|
with_tbl(tbl[1] <- lm(mpg ~ wt, data = mtcars))
#> Error in `[<-`:
#> ! `lm(mpg ~ wt, data =
#> mtcars)` must be a vector, a bare
#> list, a data frame, a matrix, or
#> NULL.
|
Row subassignment: x[i, ] <- list(...)
x[i, ] <- a
is the same as
vec_slice(x[[j_1]], i) <- a[[1]]
,
vec_slice(x[[j_2]], i) <- a[[2]]
, … .
|
with_tbl(tbl[2:3, ] <- tbl[1, ])
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 1 e <dbl [1]>
#> 3 1 e <dbl [1]>
#> 4 NA h <chr [1]>
|
|
with_tbl(tbl[c(FALSE, TRUE, TRUE, FALSE), ] <- tbl[1, ])
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 1 e <dbl [1]>
#> 3 1 e <dbl [1]>
#> 4 NA h <chr [1]>
|
Only values of size one can be recycled.
|
with_tbl(tbl[2:3, ] <- tbl[1, ])
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 1 e <dbl [1]>
#> 3 1 e <dbl [1]>
#> 4 NA h <chr [1]>
|
|
with_tbl(tbl[2:3, ] <- list(tbl$n[1], tbl$c[1:2], tbl$li[1]))
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 1 e <dbl [1]>
#> 3 1 f <dbl [1]>
#> 4 NA h <chr [1]>
|
with_df(df[2:4, ] <- df[1:2, ])
#> Error in `[<-.data.frame`(`*tmp*`, 2:4, , value = structure(list(n = c(1L, : replacement element 1 has 2 rows, need 3
|
with_tbl(tbl[2:4, ] <- tbl[1:2, ])
#> Error in `[<-`:
#> ! Assigned data `tbl[1:2, ]`
#> must be compatible with row
#> subscript `2:4`.
#> ✖ 3 rows must be assigned.
#> ✖ Element 1 of assigned data has 2
#> rows.
#> ℹ Only vectors of size 1 are
#> recycled.
#> Caused by error in `vectbl_recycle_rhs_rows()`:
#> ! Can't recycle input of size 2 to size 3.
|
For compatibility, only a warning is issued for indexing beyond the
number of rows. Appending rows right at the end of the existing data is
supported, without warning.
|
with_tbl(tbl[5, ] <- tbl[1, ])
#> # A tibble: 5 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA f <int [2]>
#> 3 3 g <int [3]>
#> 4 NA h <chr [1]>
#> 5 1 e <dbl [1]>
|
|
with_tbl(tbl[5:7, ] <- tbl[1, ])
#> # A tibble: 7 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA f <int [2]>
#> 3 3 g <int [3]>
#> 4 NA h <chr [1]>
#> 5 1 e <dbl [1]>
#> 6 1 e <dbl [1]>
#> 7 1 e <dbl [1]>
|
with_df(df[6, ] <- df[1, ])
#> n c li
#> 1 1 e 9
#> 2 NA f 10, 11
#> 3 3 g 12, 13, 14
#> 4 NA h text
#> 5 NA <NA> NULL
#> 6 1 e 9
|
with_tbl(tbl[6, ] <- tbl[1, ])
#> Error in `[<-`:
#> ! Can't assign to rows beyond the end with non-consecutive locations.
#> ℹ Input has size 4.
#> ✖ Subscript `6` contains non-consecutive location 6.
|
with_df(df[-5, ] <- df[1, ])
#> n c li
#> 1 1 e 9
#> 2 1 e 9
#> 3 1 e 9
#> 4 1 e 9
|
with_tbl(tbl[-5, ] <- tbl[1, ])
#> Error in `[<-`:
#> ! Can't negate rows past the end.
#> ℹ Location 5 doesn't exist.
#> ℹ There are only 4 rows.
|
with_df(df[-(5:7), ] <- df[1, ])
#> n c li
#> 1 1 e 9
#> 2 1 e 9
#> 3 1 e 9
#> 4 1 e 9
|
with_tbl(tbl[-(5:7), ] <- tbl[1, ])
#> Error in `[<-`:
#> ! Can't negate rows past the end.
#> ℹ Locations 5, 6, and 7
#> don't exist.
#> ℹ There are only 4 rows.
|
with_df(df[-6, ] <- df[1, ])
#> n c li
#> 1 1 e 9
#> 2 1 e 9
#> 3 1 e 9
#> 4 1 e 9
|
with_tbl(tbl[-6, ] <- tbl[1, ])
#> Error in `[<-`:
#> ! Can't negate rows past the end.
#> ℹ Location 6 doesn't exist.
#> ℹ There are only 4 rows.
|
For compatibility, i
can also be a character vector
containing positive numbers.
|
with_tbl(tbl[as.character(1:3), ] <- tbl[1, ])
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 1 e <dbl [1]>
#> 3 1 e <dbl [1]>
#> 4 NA h <chr [1]>
|
Row and column subassignment
Definition of x[i, j] <- a
x[i, j] <- a
is equivalent to
x[i, ][j] <- a
.
Subassignment to x[i, j]
is stricter for tibbles than
for data frames. x[i, j] <- a
can’t change the data type
of existing columns.
with_df(df[2:3, 1] <- df[1:2, 2])
#> n c li
#> 1 1 e 9
#> 2 e f 10, 11
#> 3 f g 12, 13, 14
#> 4 <NA> h text
|
with_tbl(tbl[2:3, 1] <- tbl[1:2, 2])
#> Error in `[<-`:
#> ! Assigned data `tbl[1:2,
#> 2]` must be compatible with
#> existing data.
#> ℹ Error occurred for column `n`.
#> Caused by error in `vec_assign()`:
#> ! Can't convert <character> to <integer>.
|
with_df(df[2:3, 2] <- df[1:2, 3])
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 2:3, 2,
#> value = list(9, 10:11)): provided 2
#> variables to replace 1 variables
#> n c li
#> 1 1 e 9
#> 2 NA 9 10, 11
#> 3 3 9 12, 13, 14
#> 4 NA h text
|
with_tbl(tbl[2:3, 2] <- tbl[1:2, 3])
#> Error in `[<-`:
#> ! Assigned data `tbl[1:2,
#> 3]` must be compatible with
#> existing data.
#> ℹ Error occurred for column `c`.
#> Caused by error in `vec_assign()`:
#> ! Can't convert <list> to <character>.
|
with_df(df[2:3, 3] <- df2[1:2, 1])
#> Warning in
#> `[<-.data.frame`(`*tmp*`, 2:3, 3,
#> value = structure(list(n = c(1L, :
#> provided 3 variables to replace 1
#> variables
#> n c li
#> 1 1 e 9
#> 2 NA f 1
#> 3 3 g NA
#> 4 NA h text
|
with_tbl(tbl[2:3, 3] <- tbl2[1:2, 1])
#> Error in `[<-`:
#> ! Assigned data `tbl2[1:2,
#> 1]` must be compatible with
#> existing data.
#> ℹ Error occurred for column `li`.
#> Caused by error in `vec_assign()`:
#> ! Can't convert <tbl_df> to <list>.
|
with_df2(df2[2:3, 1] <- df2[1:2, 2])
#> Warning in matrix(value, n, p):
#> data length [8] is not a
#> sub-multiple or multiple of the
#> number of columns [3]
#> tb.n tb.c tb.li m.1 m.2 m.3 m.4
#> 1 1 e 9 1 0 0 0
#> 2 1 0 0 0 1 0 0
#> 3 0 1 0 0 0 1 0
#> 4 NA h text 0 0 0 1
|
with_tbl2(tbl2[2:3, 1] <- tbl2[1:2, 2])
#> Error in `[<-`:
#> ! Assigned data `tbl2[1:2,
#> 2]` must be compatible with
#> existing data.
#> ℹ Error occurred for column `tb`.
#> Caused by error in `vec_assign()`:
#> ! Can't convert <double[,4]> to <tbl_df>.
|
|
with_tbl2(tbl2[2:3, 2] <- tbl[1:2, 1])
#> # A tibble: 4 × 2
#> tb$n $c $li m[,1] [,2]
#> <int> <chr> <list> <dbl> <dbl>
#> 1 1 e <dbl [1]> 1 0
#> 2 NA f <int [2]> 1 1
#> 3 3 g <int [3]> NA NA
#> 4 NA h <chr [1]> 0 0
#> # ℹ 1 more variable: m[3:4] <dbl>
|
A notable exception is the population of a column full of
NA
(which is of type logical
), or the use of
NA
on the right-hand side of the assignment.
|
with_tbl({tbl$x <- NA; tbl[2:3, "x"] <- 3:2})
#> # A tibble: 4 × 4
#> n c li x
#> <int> <chr> <list> <int>
#> 1 1 e <dbl [1]> NA
#> 2 NA f <int [2]> 3
#> 3 3 g <int [3]> 2
#> 4 NA h <chr [1]> NA
|
with_df({df[2:3, 2:3] <- NA})
#> n c li
#> 1 1 e 9
#> 2 NA <NA> NA
#> 3 3 <NA> NA
#> 4 NA h text
|
with_tbl({tbl[2:3, 2:3] <- NA})
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA <NA> <NULL>
#> 3 3 <NA> <NULL>
#> 4 NA h <chr [1]>
|
For programming, it is always safer (and faster) to use the correct
type of NA
to initialize columns.
|
with_tbl({tbl$x <- NA_integer_; tbl[2:3, "x"] <- 3:2})
#> # A tibble: 4 × 4
#> n c li x
#> <int> <chr> <list> <int>
#> 1 1 e <dbl [1]> NA
#> 2 NA f <int [2]> 3
#> 3 3 g <int [3]> 2
#> 4 NA h <chr [1]> NA
|
For new columns, x[i, j] <- a
fills the unassigned
rows with NA
.
with_df(df[2:3, "n"] <- 1)
#> n c li
#> 1 1 e 9
#> 2 1 f 10, 11
#> 3 1 g 12, 13, 14
#> 4 NA h text
|
with_tbl(tbl[2:3, "n"] <- 1)
#> # A tibble: 4 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 1 f <int [2]>
#> 3 1 g <int [3]>
#> 4 NA h <chr [1]>
|
|
with_tbl(tbl[2:3, "x"] <- 1)
#> # A tibble: 4 × 4
#> n c li x
#> <int> <chr> <list> <dbl>
#> 1 1 e <dbl [1]> NA
#> 2 NA f <int [2]> 1
#> 3 3 g <int [3]> 1
#> 4 NA h <chr [1]> NA
|
with_df(df[2:3, "n"] <- NULL)
#> Error in x[[jj]][iseq] <- vjj: replacement has length zero
|
with_tbl(tbl[2:3, "n"] <- NULL)
#> Error in `[<-`:
#> ! `NULL` must be a vector, a
#> bare list, a data frame or a
#> matrix.
|
Likewise, for new rows, x[i, j] <- a
fills the
unassigned columns with NA
.
|
with_tbl(tbl[5, "n"] <- list(0L))
#> # A tibble: 5 × 3
#> n c li
#> <int> <chr> <list>
#> 1 1 e <dbl [1]>
#> 2 NA f <int [2]>
#> 3 3 g <int [3]>
#> 4 NA h <chr [1]>
#> 5 0 <NA> <NULL>
|
Definition of x[[i, j]] <- a
i
must be a numeric vector of length 1.
x[[i, j]] <- a
is equivalent to
x[i, ][[j]] <- a
.
NB: vec_size(a)
must equal 1. Unlike
x[i, ] <-
, x[[i, ]] <-
is not valid.